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ABSTRACT 

This study utilized monthly averages of daily rates for the 10-year constant maturity 

Treasury note, the Ibbotson Bond Index with maturity of 20-year Treasury Index, and 

Moody's Aaa and Baa seasoned bond indices to investigate the threshold behavior of interest 

rates pairs. The data covered the period from January 1960 to December 1997, with a total of 

456 observations for each variable. Three (Lo-Zivot 2001, Hansen-Seo 2002, and Enders-

Siklos 2001) different non-linear, discontinuous, asymmetric time-series econometric 

alternatives were applied to investigate the dynamics of the four interest rates pairs. 

Forecasting accuracy evaluation was utilized for model evaluation by applying one-step-

ahead up to six-step-ahead forecasts. 

Among the findings, it was ascertained that interest spreads are stationary, yet the 

speeds of adjustment are asymmetric. In a bivariate setting, all of the interest rates pairs 

followed the threshold cointegration behavior. All the interest rates pairs were shown to be 

threshold cointegrated. In general, the adjustment speeds were asymmetric and, especially, 

the threshold estimates were asymmetric in a three-regime environment. 

Long run equilibrium relationships existed between Moody's corporate bond indices 

and Treasury note and Ibbotson bond index. In general, for a one percent increase in 

Treasury rates (either Treasury note or Ibbotson index), in the long run, it will generate a 

more than one percent increase in corporate bond indices (Aaa or Baa). Furthermore, the Baa 

bond index was shown to have a greater sensitivity to interest rate changes than the Aaa bond 

index. 
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For the model evaluation side, one-step-ahead forecast to six-step-ahead forecast 

performance evaluations were conducted for the threshold cointegration models and the 

counterpart of the linear cointegration models. The results showed that no one particular 

threshold cointegration model dictated the overall forecasting accuracy. For different interest 

rates pairs under consideration, different threshold cointegration models offered a better St. 

Moreover, all of the linear cointegration models performed relatively less accurate than the 

threshold cointegration models, which reinforce the empirical applications of the threshold 

cointegration models. 



www.manaraa.com

1 

CHAPTER 1. INTRODUCTION 

The credit spread of a given corporate bond is defined as its yield premium minus the 

yield of a government bond with identical time to maturity. In general, credit spreads exist 

because of several risks—default, liquidity, operational, legal, systematic, and all other risks 

inherent in corporate bonds. 

Interest in credit spreads stems from a few factors. According to Kao (2000), since 

1990, the financial industry has experienced several credit crunches, including the high-yield 

bond debacle (Junk bonds), large derivative losses (LTCM, 1998), and a global 

credit/liquidity crisis (the latest Argentina situation, 1999 to 2001). In recent years, 

academicians and practitioners have shown greater interest in credit-risk pricing models. 

Fewer than five studies were published per year from 1959 to 1992, whereas from 1993 to 

1999, more than 10 studies were published per year; however, more than 30 studies were 

published in the credit-risk pricing area in 1998 and 1999. One important contributing factor 

in the past two decades, has been that derivative products have become a desirable part of 

investment strategies. In particular, credit derivatives with payoGs linked to credit events 

(e.g., default, change in rating status, credit spreads) have become popular among 

institutional investors and financial entities. 

Several researchers, including Wilson and Jones (1990), Chang and Huang (1990), 

and Adrangi and Ghazanfari (1996/1997) have documented the seasonality of corporate 

bonds, e.g., the January effect and the weekday effect, to defy the market efficiency 

hypothesis. More recently, Collin-Dufresne, Goldstein, and Martin (1999) have shown that 

hedge funds are extremely sensitive to changes in the credit spread. They examined the 
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determinants of credit spread changes for a sample of individual bonds. Their results show a 

common factor explains the majority of the variation while a number of variables, which 

theoretically should explain credit spread changes, have little explanatory power. This 

Ending provides evidence that the gain from studying individual bonds (instead of bond 

indices) is limited. Pedrosa and Roll (1998) asserted that credit spread risks are non-

diversifiable. Hence, their work intensifies the importance of investigating credit spreads. 

They also found that credit spreads of various indices are affected by some common 

underlying factors. 

It is essential to understand how the pricing of corporate debt is calculated to acquire 

a deeper understanding of credit risk. The first approach utilizes the segmenfaffon mode/, 

which divides the pricing factors into three categories: interest rate risk, default risk, and 

liquidity risk. Fisher (1959), Silvers (1973), and Boardman and McEnally (1981) advocated 

this approach. The second line of research focuses on the pricing of corporate debt from a 

long-term perspective, the mwAefyze/dpremium mode/, which examines the effect of risk 

factors on bonds grouped by risk categories. Advanced by Fons (1987), and Altman and 

Bencivenga (1995), the market yield premium model analyzes the market yield premium (the 

average yield spread between risky debt securities and risk-free securities) for holding a risky 

bond over a long period. This approach shows a positive risk-adjusted return relationship: as 

the risk of the debt increases, the market yields premium increases. The market yield 

premium model often applies to the study of the default risk of holding non-investment grade 

debt. 

The third approach focuses on the short-run dynamics of the debt, thejy/e/cf apread 

mode/, which includes liquidity risk measures and broadly defined default risk. Pioneered by 
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Fridson and Jonsson (1995), and Garman and Fridson (1996), the yield-spread model was 

formulated by defining the dependent variable as the yield on risky debt minus the risk-free 

rate, and includes both default risk and liquidity risk measures in the analysis as explanatory 

variables. 

The fourth approach is a combination of the yield premium and yield spread models. 

Bamhill, Joutz, and Maxwell (2000) formulated their model as follows. First, the long-run 

relationship is estimated through the cointegration techniques of Engle and Granger (1987) 

and Johansen (1988,1991). Second, the yield spread part is studied by incorporating a 

Merrill Lynch aggregate index of the non-investment grade market to assess the default risk 

and liquidity risk. Third, short-run dynamics and long-run relationships are estimated 

simultaneously to determine the yields for holding non-investment grade bonds. The 

researchers concluded that the traditional yield spread model is inadequate and a long-run 

relationship exists between non-investment grade yields, Treasuries, and default rates. 

Neal, Rolph, and Morris (2000), hereafter NRM, also applied Johansen's (1988, 

1991) full information maximum likelihood cointegration approach to model the time-series 

behavior of U.S. government and corporate bond rates. NRM found that government rates 

are cointegrated with corporate rates and that the time horizon dictates the dynamic 

relationships between credit spreads and Treasury rates. Intuitively, Treasury and corporate 

rates have very close co-movements. The cointegrating relation implies that they cannot 

deviate from each other too much for too long. As mentioned by NRM, this close linkage is 

not captured in the reduced form bond pricing approach of Duûee (1999) and Duffie and 

Singleton (1999), or in the structural models such as Merton (1974). Recent development in 
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credit spread option models such as Das and Tufano (1996), and Longstaff and Schwartz 

(1995b) also failed to capture this linkage. 

NRM found that, in the short-run (less than three years), an increase in the Treasury 

rate would cause the credit spread to narrow. However, for longer time periods (greater or 

equal to three years), higher Treasury rates will cause credit spreads to widen. ^ Such 

asymmetric results are not captured by the existing models. This finding has great 

implications in the areas of modeling bond pricing and credit derivatives. Moreover, NRM's 

long run results are consistent with models such as Lesseig and Stock (1998), and Duan, 

Moreau, and Sealey (1995), that enable higher rates to increase credit spreads. 

NRM's cointegration approach also provides insights in the area of investment 

management. They show that corporate bonds are more sensitive to interest rate movements 

than comparable Treasury rates, since higher Treasury rates widen corporate spreads in the 

long run. The asymmetric dynamic effects between the short-run and the long-run also offer 

an insight of the correlational relationship between credit spreads and interest rates that may 

be ffme varying (e.g., three years is the threshold), a fact also noted by Hund (1999). Current 

literature, such as Das and Tufano (1996), and Jarrow, Lando and Tumbull (1997), assumes a 

constant correlation between credit spreads and the risk free rate. NRM claims that "if f&e 

correWio» vonea over fmze, if w c/ew Aow fo fxzromeferize f&ese mode/a." Fortunately, 

the cointegration technique has the power to overcome this shortcoming. 

' Longstaff and Schwartz (1995a) predicted that an increase in the Treasury rate would cause the credit spread 
to narrow. The argument comes from the relationship between risk-free rate and driA process for firm value. In 
their model, higher interest rates increase the drift process for firm value and, all else constant, enabling the firm 
to move further away from a predetermined default barrier. As the default probability is reduced, the credit 
spread 611s. On the other hand, Bemanke and Gertler (1989) implied that higher interest rates, all else constant, 
would increase credit spreads. In their model, higher rates increase agency problems for borrowers. This 
results in increases in credit spreads because it widens the gap between internal and external financing costs. 
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One important issue that has not yet been addressed in this literature is the possibility 

of wW/ww osymmefric procès in the U.S. corporate bond 

market. The main point of this research is that, if the true adjustment process to the long-run 

equilibrium path is asymmetric then the conventional linear cointegration analysis suffers 

from a specification error? The potential damage to financial practitioners will be severe if 

model builders or traders believe the true data adjustment process is symmetric, and all the 

trading and hedging strategies are based on the symmetric adjustment assumption. 

The current study adopted threshold cointegration methods to study Treasury and 

corporate bond rates and their corresponding spread behaviors. The first test was to 

determine whether corporate bond indices and Treasury bonds are cointegrated. If the 

corporate bond indices are cointegrated with Treasury bonds then the adjustment speeds have 

pertinent information regarding future economic activities. It was assumed that, if they are 

cointegrated, the speed of adjustment to the cointegration relation is state dependent. This 

means that, in a two-regime framework, when the deviation from the long-run equilibrium is 

positive (negative), the adjustment speed is pi (P2), where pi does not need to be equal to p%. 

The speeds of adjustment were tested to determine whether they are the same if there exists a 

co-integrating relationship between Treasury bonds and corporate indices. Similarly, in a 

three-regime environment, it was assumed that Treasury and corporate rates follow a random 

walk process when they are sufficiently close to the equilibrium level; however, when they 

are outside the band, they will be mean-reverting to the equilibrium band, possibly with 

different adjustment speeds. Accordingly, this research documents the threshold 

 ̂The asymmetry is not the same as the asymmetry discussed by NRM. The focus is more on the asymmetric 
behaviors of the adjustment speeds to the long-run equilibrium. In NRM, asymmetry comes from different 
credit spreads before and after three years under a sudden shock to a risk-free rate. 
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cointegration (and threshold error-correction models) dynamics between Treasury rates and 

corporate bond rates. 

The well-known cost-of-carry model that relates index and index-futures prices was 

used to illustrate the motivation behind the threshold cointegration approach. In general, 

futures prices tend to lead index prices. If the futures price is too high relative to the index 

value, arbitrageurs will buy the stock underlying the index and sell the futures contract. If 

the futures price is too low, they will do the reverse, i.e., sell the stocks underlying the index 

and buy the futures contract. Index-futures arbitrageurs only enter into the market if the 

deviation from the arbitrage relation is sufficiently large to compensate for transaction costs 

and associated interest rate and dividend risks. In a three-regime threshold cointegration 

model, the middle regime can be treated as the band around the theoretical futures prices 

within which arbitrage is not profitable for most arbitrageurs, where both futures and index 

prices may follow a random walk process without moving closer to each other. Note that, if 

the band becomes narrower and narrower, a three-regime environment will eventually 

collapse into a two-regime environment. 

The purpose of the current study was also to determine the extent to which threshold 

cointegration models are able to account for broad time series variations in observed yields of 

corporate indices for different maturities and different investment grades. By formulating the 

asymmetric threshold cointegration models advanced by Lo and Zivot (2001), Hansen and 

Seo (2002), Enders and Siklos (2001), and the traditional symmetric cointegration model 

pioneered by Engle and Granger (1987), one may be able to identify the most probable 

adjustment process. Moreover, this study compared the forecast performance of the different 
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models. Out-of-sample forecasts and simulations were be performed and compared for both 

symmetric and asymmetric models to accomplish the following goals: 

* Offer a non-linear, discontinuous, asymmetric alternative to the traditional linear, 

continuous and symmetric modeling approach. 

* Examine credit spread dynamics for different maturities and different investment 

grades in a bivariate setting of corporate and Treasury rates. 

* Determine if corporate and Treasury rates are non-stationary, but cointegrated with 

nonlinear threshold behavior. If corporate and Treasury rates follow threshold 

cointegration then the traditional linear cointegration model is misspecified. 

* Provide dynamic responses of corporate yields to movements in Treasury rates in a 

bivariate threshold vector error correction model (TVECM) and a threshold 

autoregressive (TAR) framework, which will offer more insightful long-run results. 

* Apply the same data set as NRM. The current model is very close to NRM, which 

uses linear cointegration and the impulse response function to shed lights on credit 

rate dynamics. In this setting, one is able to compare the results for a long-run impact 

of Treasury shocks on corporate rates, which can have important implications for risk 

management and bond pricing. 

The value of study time series properties of the term structure and corporate yield 

spreads is rewarding because it can provide better forecasts and understanding of the term 

structure and corporate yield spreads, which is useful because one can apply them to the 

following areas of study: 

1. Real economic activities which include business cycles theory, stock markets 

forecasts, inflation forecasts, etc.; 
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2. Price portfolios comprised of Treasury and corporate bonds; 

3. Determine the value of a firm; 

4. Price credit derivatives and improving credit management quality; 

5. Application to risk management and hedging activities; 

6. Price different financial instruments, which include bonds, mortgage backed 

securities, caps, swaptions, and other financial derivatives; 

7. Improve the adequacy of reserves held by banks and insurance companies; and 

8. Improve the profitability of trading, the accuracy of current asset pricing, and option 

pricing models used by securities firms and investment departments. 
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CHAPTER 2. MOTIVATION AND LITERATURE REVIEW 

2.1. Why study the spreads between Treasury and Corporate Bond Indices? 

Studying the spread between corporate and Treasury bonds can help one gain a 

deeper understanding of both the microeconomic level, such as the firm's capital structure, 

and the macroeconomic level, such as real aggregate economic activities. At the 

microeconomic firm level, Black and Scholes (1973), and Merton (1974) revealed that, in the 

study of a firm's value, corporate bonds might be viewed as options on the firm's assets. A 

great deal of research has focused on the contingent claims (or structural) approach to the 

pricing of corporate debt (see Duffee (1998), Tauren (1999a) and (1999b)). However, there 

are two unrealistic assumptions made by previous studies. First, previous models assumed a 

constant capital structure, which is unrealistic over the life of corporate bonds. Second, 

previous models predicted that the credit spreads on corporate bonds drift downward over 

time as the value of the firm's assets drifts upward. However, evidence offered by Duffee 

(1998) and Tauren (1999b) indicates that credit spreads revert toward long-term averages. 

Tauren (1999b) assumed the dynamics of a firm's debt ratio follow a mean-reverting 

stochastic process. The debt ratio gradually approaches a long-run target ratio. Some 

predictions from the model are: (a) The model generates credit spreads whose level and 

dynamics are realistic and comparable to those of actual bonds regardless of investment 

grades, (b) Credit spreads increase as the firm's target debt ratio increases. The relationship 

is more important for long-term bonds. The firm's current debt ratio is relatively more 

important for bonds with short maturities, (c) Credit spreads on corporate bonds decrease at 

the speed at which the firm adjusts its capital structure toward the long-term target debt ratio. 
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(d) Credit spreads on long-term corporate bonds exhibit a mean-reversion toward long-term 

averages determined by the firm's target debt ratio, (e) The mean-reversion in the credit 

spreads is faster at: high capital structure adjustment speeds, high credit spread levels, and 

short maturities, (f) Credit spreads are more volatile for short maturities versus long 

maturities and for high credit spread levels versus low credit spread levels. 

Longstaff and Schwartz (1995b), Stevens, Clinebell and Kahl (1998), and Morris, 

Neal and Rolph (1998) documented that credit spreads calculated from corporate bond yield 

indices that are mean-reverting. Duffee (1998) and Tauren (1999a) also documented mean-

reversion in the credit spreads of individual bonds. The dynamics of the credit spreads on 

long-term bonds exhibit mean reversion behavior as follows: they drift downward at debt 

ratios that are above the target debt ratio and upward at debt ratios that are below the target 

debt ratio. The long-term mean spreads are implied by the target debt ratio. The speed of the 

mean reversion is positively related to the speed at which the firm adjusts toward the target 

debt ratio, negatively related to the maturity of the bond, and positively related to the level of 

the credit spread. The adjustment processes are assumed to be symmetric in both directions 

and they are conditional on no default occurring. 

The firm's debt ratio in Tauren's (1999a) model, reverts toward a long-term target 

debt ratio. Default is triggered at high values of the debt ratio. The model predicts that the 

level of the credit spreads of long-term bonds is more sensitive to the firm's target debt ratio 

than to its current debt ratio. The case is the opposite for bonds with shorter maturities. The 

credit spreads predicted by the model are also mean-reverting. The model outperforms that 

of Longstaff and Schwartz (1995a) on bonds from the Boise Cascade Corporation. 
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At the macroeconomic level, the spread of corporate and Treasury bonds can be 

related to real economic activities, e.g., business cycles. For example, the current study used 

corporate bond indices to investigate the dynamic adjustments of corporate bond spreads 

versus Treasury bonds. As the spread increases, the risk premium increases and the cost of 

capital increases. As a result, investors may have less confidence in the corporation's 

earnings, profitability, and future income streams. A resulting direct impact is a hit to the 

valuation of the corporations, which will eventually reduce the stock prices of the firms and 

may cause a downgrade of their credit ratings by the rating agencies. One indirect impact 

will be the wealth effect. Since stock prices have declined, investors perceive they are less 

affluent and reduce their usual consumption patterns. Eventually, this sequence of activities 

will lead to a slowdown of the economy. 

Another interesting dynamic warranting investigation is the adjustment speeds of the 

spread to its long-run equilibrium. For example, assume the current spread between a 

corporate index and Treasury bonds is 4%. Consider two cases: higher spread at 6% versus 

lower spread at 2%. If an unexpected shock hits the economy and the spread shoots to 6%, 

investors may lose confidence and their investment will become more risky. Excluding the 

possibility of any structural changes of the economy, we may compare the situations before 

and after the shock: if the adjustment process of the spread takes a long time to move back to 

the "normal" level at 4%, it implies that the economy may sustain a long period of recession. 

However, if the adjustment is rather quick then the recession is short-lived. Hence, the speed 

of adjustment plays an important role in the analysis. 

On the opposite side, if the shock forces the spread down to 2%, investors have an 

optimistic outlook for the future economy. It may be one solid economic expansion or it may 
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be one "bubble" expansion (e.g., 1999 Internet new era). For example, if it takes a long time 

for the spread to adjust back to the "normal" 4% then investors will enjoy a long-term 

economic expansion. On the other hand, if the adjustment is violently quick then the 

expansion is a short-life expansion, which implies the bubble bursts rather quickly. 

Since the speed of adjustment plays an important role in the reaction to unexpected 

economic shocks, an immediate testable hypothesis is concerned with whether the speeds of 

adjustment are the same or not. Casual observations suggest strong co-movements of 

Treasury bonds rates and corporate indices. Conventional studies usually make the 

assumption that there exists a linear co-integrating relationship between Treasury bonds and 

corporate indices, and hence there exists a symmetric adjusting process to the long-run 

equilibrium. This means that the adjustment speeds are the same either above or below the 

long-run equilibrium (band). In current literature on credit spreads, there are no serious 

distinctions to separate the behaviors of adjustment speeds. 

2.2. Relationships between Credit Spreads and other Economic and Financial Market 

Information 

In order to estimate and price credit spreads, one needs to understand what kinds of 

economic forces drive the changes in spreads. In general, spread changes may be related to 

several risk factors such as interest rates, certain macroeconomic variables, company and 

industry financial fundamentals, liquidity, time-to-maturity, tax effects, etc. The following 

sections focus on the relationships of credit spreads to other economic and financial market 

information. 
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2.2.1. Credit spreads and treasury rates 

Cornell and Green (1991) found that returns on low-grade bonds are much less 

responsive to changes in Treasury yields than are returns on high-grade bonds. They 

attributed the result to the shorter duration of low-grade bonds, owing to less restrictive call 

features and higher coupons. Hence, part of the weak responsiveness of low-grade bond 

returns to changes in Treasury yields may be driven by a negative correlation between 

interest rate risk and default risk. 

Longstaff and Schwartz (1995a) found a strong negative relationship between 

Moody's Bond Yield Indices and Treasury bond yields to Treasury yields. A drawback of 

this result is that Moody's indices are comprised of yields on callable bonds and the strong 

negative relationship may be driven by variations in the value of the call options. 

Iwanowski and Chandra (1995) examined the relationship between Treasury yields 

and yield spreads of non-callable bonds during 1980s and 1990s. They found a small 

negative relationship between the levels of the Treasury yield and yield spreads, and no 

significant relationship between the Treasury term structure slope and spreads. Duffee 

(1996) argued that, because Iwanowski and Chandra (1995) used refreshed yield indices/ the 

result may underestimate the responsiveness of yield spreads to Treasury yields, because it 

cannot capture changes in yields on bonds that were upgraded or downgraded during that 

period. 

 ̂ A bond index will change its rating due to the bonds it holds, either downgraded between periods t and t + 1 or 
that fallout of the maturity range between t and t + 1. A "refreshed" yield index is an index that holds credit 
ratings fixed over time by changing its portfolio of bonds. 
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2.2.2. Credit spreads and the business cycle 

Research linking the shape of the Treasury term structure to future variations in the 

business cycle, measured by NBER dating or the growth rate of Gross Domestic Product 

(GDP), includes Stock and Watson (1989), Chen (1991), Estrella and Hardouvelis (1991), 

and Estrella and Mishkin (1996). One well-known stylized fact is that low yields and a 

steeply sloped term structure both correspond to future economic expansion. Duffee (1996) 

conjectured that: "ZowjyzeMs and a afeep s/qpe^ôrecasfyîdwe Afg/z economzc growf/z. ^Tzen 

f/zg groWz arrives, _yzeZ& rwe aW f/zg ^Zqpg lowy;g/(6 for a sfggp ^Zqpg) ̂ brgcayf 6ofA 

/wfwre growfA awf^wfwrg zwcrea^ef m yze&6 for^/wre decreafef m f/zg f/qpe^". DuAee 

offered the following interpretation: ".. .w/zen Trgaawy j/zgM? riyg, f/ze gcowomy w 

gxpaWz/zg, ^rmj org 6effer awf de^zw/f proAatz/zfigfWzgfz ^Ag a/qpe off/ze _yze/d 

curve ^fggpgnf, f/zg economy M cowfracfrng, pro6a6zZzfzgf a/zouM 6e r»mg, wAzcA 

f AowZd wide» fAe _yzgW aprgadk". However, this argument does not earn support from the 

empirical study regarding the slope coefficients which are inconsistent with such a standard 

business cycle scenario (see Duffee, 1996, Table 2). 

2.2.3. Credit spreads and the pricing of corporate bonds and value of the firm 

Black and Scholes (1973), and Merton (1974) revealed that corporate bonds might be 

viewed as options on the firm's assets in the study of the firm's value. This contingent 

claims (structural) approach uses company-specific information and treats debt as a 

contingent claim (option) on the firm's value. However, there are two unrealistic 

assumptions made by previous studies. First, previous models assume a constant capital 

structure, which is unrealistic over the life of corporate bonds. Second, previous models 
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predict the credit spreads on corporate bonds drift downward over time as the value of the 

firm's assets drifts upward. Empirical evidence offered by Duffee (1998) and Tauren 

(1999b) indicate that credit spreads revert toward long-term averages. 

Credit spreads are more volatile at high levels than at low levels of the credit spread. 

Volatilities are positively related to term-to-maturity at short maturities, but are a decreasing 

function of term-to-maturity at more typical maturities. In Tauren's (1999a, b) model, the 

correlation between the changes in the credit spreads and the default-free interest rate is 

positive, because interest rates tend to be negatively correlated with asset values. However, 

Kwan (1996), Longstaff and Schwartz (1995a), and Duffee (1996) documented that changes 

in credit spreads and default-free interest rates are negatively correlated. This correlation is 

negatively related to the credit quality of the bond. Tauren (1999a) concluded that there 

exists an empirical relationship between the default risk in corporate bonds and interest rates 

that are not taken into account by the model. 

2.2.4. Credit spreads and default rates, credit derivatives, and risk management 

Pons, Carty, and Kaufman (1994) found that future default rates on bonds rated by 

Moody's are positively correlated with forecasts of future GDP growth. Longstaff and 

Schwartz (1995a) showed by using a non-callable zero-coupon corporate bond model, that 

variations over time in default risk are accompanied by variations in yield spreads. Hence, 

patterns in the behavior of spreads can be used to make inferences about the relationship 

between default risk and interest rates. 

Jarrow and Tumbull (1995a, b) developed a reduced-form model to study the Arm's 

value, in contrast to the contingent claims approach pioneered by Black and Scholes (1973), 
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and Merton (1974). The reduced-form approach bypasses issues related to firm valuation 

and works directly with market information. Their model can infer conditional Martingale 

probabilities of default from the term structure of credit spreads. Economic theory states that 

market and credit risk are inherently interrelated. This interdependence property between 

market and credit risk can affect the asset allocation decisions of economic capital. It can 

also affect the performance evaluation of determining risk-adjusted return on capital 

(RAROC) among different investment avenues. 

The dynamics between market and credit risk are straightforward: if the market value 

of the firm's assets changes drastically—this generates market risk—which will affect the 

probability of default rate—which will generate credit risk. Conversely, if the probability of 

default rate unexpectedly changes—this generates credit risk—which will affect the market 

value of the firm—which will generate market risk. 

Jarrow and Tumbull (1995a, b) priced credit derivatives off the observable term 

structures of interest rates for different credit classes. They used observable market data— 

credit spreads—to infer the market's assessment of the bankruptcy process and then price 

credit risk derivatives. Jarrow and Tumbull (2000) modeled the default process as a multi-

factor Cox process; the intensity function is assumed to depend upon different state variables. 

Modeling the intensity function as a Cox process enabled Jarrow and Tumbull to model the 

empirical observation that the credit spread depends on both the default-free term structure 

and an equity index. Referring to empirical evidence in this area, Shane (1994) stated that: 

"refwrnr on Azg/z yze/d 6onak /zave a /zzg/zer corrg/afzofz wzf/z f/ze refwrn o/z an egwzfy zwfex 

f/za» ZowjWd and a Zower cwreZafzo» wzf/z f/ze refur» o/z a Trea^wy 6oW zWez f/za% 

Zmver jWd Wzck ". As in Longstaff and Schwartz (1995a, b), and Das and Tufano (1996), 
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Duffee (1998), Jarrow and Tumbull (2000) stated: "f/ze cAa/zge^ m credzf jpreodk and 

cAanggf m dg^zwZf^"gg mfere^ rafgf Agzng negafzve(y corrg/afe^ and f/ze gjfzmafgd 

cog^zczgnk zncreaye m a6^oZzzfe magmfwde of f/ze credif gWz(y decrea$e$ zrrejpecfzve of 

7»a/wz(y ". The model developed by Jarrow and Tumbull (2000) can be used for risk 

management and hence it is possible to price portfolios of corporate bonds and credit 

derivatives in a more consistent way. 

2.2.5. Credit spreads and the equity market 

Chen (1991) found that aggregate corporate yield spreads are linked to stock returns, 

which, in turn, are linked to future GDP growth. Duffee (1996) noted that stock returns 

move inversely with corporate bond yield spreads. The relationship is stronger for lower-

rated bonds. A 10% increase in the S&P 500 corresponds to a 20 basis point decrease in 

Baa-rated yield spreads (regardless of maturity). The same increase in stock prices 

corresponds to a 10 basis point decrease in A-rated yield spreads and small decreases in 

higher-rated yield spreads. Duffee (1996) also showed that an increase in yield spreads of 

100 basis points correspond to a 2.13% decline in the growth rate of the GDP. Duffee's 

evidence provided no apparent pattern across maturities or credit ratings. 

However, there is a troubling aspect of Dufke's equation (12). The inclusion of 

stock returns had no important explanatory power on the level of the term structure. As 

Duffee (1996) noted: "Tff&gsg vorzafzow zrzyzgfd aprgad? org nof driven 6)/ varzafzow zrz 

dg/âw/f rzaA, fAen one cwz/zof z#e f/zg Ae/zavzor of corporate WzdyWdk fo /xzromefgrzzg 

modek of credzf ri?&/or f/ze pM/poaea qfprzczng of/zer (ypej of de^wA-rzfAy zwfrzmzen^". 

DuHee pointed out that equation (12) is almost misspecified because it assumes a simple 
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linear relationship between stock return and yield spreads. Duffee (1996) suggested one 

should at least consider the possibility that the variation between yield spreads and the 

Treasury yields is unrelated to default risk. 

2.2.6. Credit spreads and liquidity premium 

Giinblatt (1995) argued that yield spreads on short-term corporate instruments are 

more likely driven by the liquidity of Treasury instruments than the risk of default. It is 

plausible to believe that the value of liquidity varies with the Treasury term structure. This 

hypothesis can be tested with spreads on default-free instruments such as government agency 

bonds (Ginny Mae and Fannie Mae). This is one possible future research topic suggested by 

Duffee (1996). 

2.2.7. Credit spreads and a trader's story of supply and demand 

Traders postulate that when bond yields (both Treasury and corporate) fall, firms 

respond by issuing more bonds, but the Treasury does not do likewise. The relative increase 

in the supply of corporate bonds lowers the price of corporate debt relative to Treasury debt, 

and hence widens the yield spread. This is one more future research topic suggested by 

Duffee (1996). 

23. Literature review on the empirical studies using Threshold Cointegration 

Ghosh (1993) and Brenner and Kroner (1995) have shown that, under certain 

conditions, futures and spot prices are cointegrated. This implies an error-correction model 

for the returns in which the futures and index returns are explained by past futures and index 

returns, and the deviations (i.e., error-correction term or mispricing error) from the no-
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arbitrage relationship in the previous period. It has been documented that futures prices tend 

to lead index prices (e.g., Stoll and Whaley (1990), and Chan (1992)). Hence, deviations 

from the no-arbitrage relationship will occur when the futures react to news first, followed by 

the index. Such a pattern is reflected by the significant impact of past futures returns on the 

current index return and by a significant error-correction term. Martens, Kofinan and Vorst 

(1998) investigated the index-futures arbitrageurs' trading strategy and concluded that 

arbitrageurs only enter into the market if the deviation from the arbitrage relation is large 

enough to offset the transaction costs and the associated interest rate and dividend risks. 

Based on the Balke and Fomby (1997) framework, Martens, Kofinan and Vorst 

(1998) used a threshold autoregression model to estimate the band around the theoretical 

futures price within which arbitrage is not profitable or at least not for a large group of 

arbitrageurs. The data set used in their study included the S&P 500 index and the matching 

index-futures contract maturing in June and December 1993. The S&P 500 index was 

calculated every 15 seconds during the opening hours of the New York Stock Exchange 

(NYSE); for the index-futures, traded at the Chicago Mercantile Exchange (CME), and 

transaction prices were available with a time stamp to the nearest second. Martens et al. 

(1998) showed that by combining a threshold effect, with an error-correction model, the 

impact of the cointegrating residual (i.e., mispricing error) is increasing with the magnitude 

of that error and the information effect of lagged futures returns on index returns is 

significantly larger when the mispricing error is negative. They also showed that the U.S. 

markets respond to arbitrage opportunities in just a few minutes. They also provided an 

estimate of the error-correction model in each regime. 
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Balke and Wohar (1998) examined the dynamics of deviations 6om covered interest 

parity using daily data on the UK/US spot and forward exchange rates and their interest rates 

over the period January 1974 to September 1993. They found a substantial number of 

instances during the sample period in which deviations from the covered interest parity 

condition exceeded the transaction costs, implying possible arbitrage profit opportunities. In 

their analysis, although most of the implied profit opportunities are relatively small, there is 

evidence of some large deviations from covered interest parity. Balke and Wohar (1998) 

estimated a threshold autoregression model such that the dynamic behavior of deviations 

from covered interest parity is different outside the transaction costs band than inside the 

band. Their results indicated that inside the transaction band the impulse response functions 

are nearly symmetric; but impulse response functions are asymmetric outside the bands. 

Their findings also suggested that deviations from covered interest parity that are outside the 

transaction costs band show less persistence than those that lie inside the band. 

There are also applications of the threshold cointegration model to the area of 

agricultural economics. For example, Goodwin and Holt (1999) utilized the Balke and 

Fomby (1997) threshold cointegration method to investigate price linkages among producers, 

wholesale, and retail marketing channels in the U.S. beef market. They also evaluated the 

dynamics of the time paths of price adjustments to shocks at each level in the U.S. beef 

marketing channels. The data set included three series of weekly beef prices observed from 

January 1981 through the first week of March 1998, giving a total of 897 observations. 

Their results confirmed previous findings. In particular, the transmission of shocks is 

unidirectional with information flowing up the marketing channel from farm to wholesale to 

retail markets, but not in the opposite direction. Results show that farm markets do adjust to 
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wholesale market shocks. The effects of retail market shocks are confined to retail markets. 

Their evaluation of nonlinear impulse response functions suggests there may be asymmetric 

adjustments in response to new information. However, these differences are modest and may 

not be economically significant. Their results also suggest that the responsiveness to price 

shocks has increased in recent years. This finding might suggest markets have become more 

efficient in transmitting information through vertical marketing channels. Goodwin and 

Harper (2000) conducted a parallel analysis to Goodwin and Holt (1999) in a study of price 

dynamics and transmission of shocks through marketing channels in the U.S. pork sector. In 

a similar setting of a threshold cointegration model, they also confirmed that price adjustment 

patterns are unidirectional and information tends to flow from farm, to wholesale, to retail 

markets. 

The next chapter introduces asymmetric threshold cointegration models advanced by 

Lo and Zivot (2001), Hansen and Seo (2002), and Enders and Siklos (2001) to capture more 

insights of credit spread behaviors. Lo and Zivot (2001) provided a multivariate procedure 

for modeling threshold cointegration relationships. Based on Granger's Representation 

Theorem, the setting is a threshold vector error-correction model (TVECM) instead of a 

single-equation threshold cointegration model such as Balke and Fomby (1997), and Enders 

and Siklos (2001). Their model may capture both the long-term equilibrium relationship and 

the short-term disequilibrium adjustment process towards the long-term equilibrium. Hansen 

and Seo (2002) proposed a formal test procedure for threshold cointegration. They offered 

an algorithm to estimate model parameters. The Hansen-Seo approach is a vector error 

correction model with only one cointegrating vector and with one build-in threshold effect in 

the error-correction term in a two-regime environment. Enders and Siklos (2001) pointed out 
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that, if the adjustment process is indeed asymmetric, then the Engle-Granger cointegration 

test is misspecified and the error-correction mechanism is unable to capture the actual 

adjustment process. They suggested an alternative specification of the error-correction 

model in the form of threshold autoregressive framework. They developed asymmetric 

cointegration tests by incorporating threshold autoregressive (TAR) and momentum 

threshold autoregressive (M-TAR) adjustments into the unit-root tests of the residuals of the 

cointegration regression. 
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CHAPTER 3. METHODOLOGIES 

3.1. Introduction 

Threshold effects occur when larger shocks bring about a different response than do 

smaller shocks. The resulting dynamic responses will have a nonlinear nature, because they 

involve various combinations of adjustments from different regimes defined by different 

thresholds. These aspects are also recognized as significant characteristics of regimes 

switching models. 

Balke and Fomby (1997) focused on the fact that equilibrium errors can have 

threshold behavior. In their model, the deviation from long-run equilibrium follows 

discontinuous adjustment to a long-run equilibrium band, or put it in another way, the 

equilibrium error follows a threshold autoregressive process (TAR) that is mean-reverting 

outside a band but is a unit root process inside the band. Three types of threshold 

autoregressive (TAR) models are considered for the equilibrium error process z*; where z* is 

obtained from the standard single equation cointegration regression: y* + ox* = z*. Balke and 

Fomby (1997) formulated: (a) the equilibrium threshold (EQ-TAR) model, (b) the band 

threshold (Band-TAR) model, and (c) the return-drift threshold (RD-TAR) model. The EQ-

TAR model has the characteristic that the process tends towards a long-term equilibrium 

point (for example, zero) when equilibrium error is outside the region [-8, 8]. The Band-

TAR model has the property that the process returns to an equilibrium band [-6,8] rather 

than to an equilibrium point as defined in EQ-TAR. The RD-TAR model is where unit root 

process is present in all three regimes, but the drift parameters tend to move the process back 

to the band when the equilibrium error is outside the band. A two-step approach is offered to 
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examine this threshold cointegration behavior. The first step is to test the global 

cointegration behavior of the variable of interest. Balke and Fomby (1997) assert that most 

standard tests for cointegration, even if the errors follow a TAR process, e.g., Engle-

Granger's (1987) single equation approach and Johansen's (1988,1991) full information 

maximum likelihood approach, are able to detect the stationarity of the equilibrium error. 

The second step is to test the local behavior, i.e., to test for nonlinearity, and, especially, for 

threshold nonlinearity in the equilibrium error process. Using an arranged autoregression for 

a given potential threshold values, the threshold autoregression is estimated by ordinary least 

squares and the sum of squared errors are calculated. The estimated thresholds are the ones 

that minimize the sum of squared errors. Balke and Fomby formed their hypothesis of no 

structural change versus the alternative of two structural changes. The test statistic is a sup-

Wald (maximum Wald) statistic over all possible threshold values. 

3.2. Model 1: Lo-Zivot Threshold Cointegration Model 

Although Balke and Fomby (1997) provide an excellent way to model threshold 

behavior, their approach suffers from at least two drawbacks. First, Balke and Fomby (1997) 

focused on the univariate cointegrating residual behavior, so their method is unable to 

investigate the threshold behavior in a multivariate setting. In general, the benefit of 

multivariate modeling is that it enables one to investigate the dynamic adjustment of 

individual series more efficiently and it is also easier to uncover the overall dynamics of the 

whole multivariate system. Lo and Zivot (2001) provided a procedure for modeling 

multivariate threshold cointegration relationships. With the introduction of a threshold 

vector error correction model (TVECM), Lo and Zivot (2001) asserted that the threshold 
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error correction model could capture the long-run equilibrium relationship as well as the 

short-term disequilibrium adjustment process to the long-run equilibrium. 

Second, Balke and Fomby (1997) did not provide a specification test for their 

imposing TAR models, i.e., the model selection process in Balke and Fomby (1997) is ad 

hoc. The current research applied a specification test offered by Hansen (1997,1999) and 

advocated by Lo and Zivot (2001) to determine which TAR model is appropriate to capture 

threshold cointegration relationships for Treasury and corporate bond rates. In particular, the 

current study focused on investigating yield spread behavior between different investment 

grade and different maturity indices in U.S. Treasury and corporate bonds. In summary, a 

multivariate threshold vector error correction model allowing discontinuous adjustment 

relative to the thresholds, nonlinear adjustments to the long-run equilibrium, and asymmetric 

adjusting speeds to the long-run equilibrium was estimated and used to evaluate the dynamic 

time paths of yield spread adjustments to U.S. Treasury and corporate bond indices. 

3.2.1. A bivariate vector error correction model (VECM) 

Consider a bivariate vector autoregressive (VAR) model, where Xt is a 2 x 1 vector 

with ), for example, %% is the corporate bond rate, and x;t is the Treasury rate. 

where e, is a 2 x 1 white noise process, k is the order of autoregressive terms, Ao is a 2 x 1 

parameter vector, and A/s are 2 x 2 parameter matrices. This equation can be rewritten as: 

AZ,=A+ n%,_, + + c,, (3.2) 

Then 

k 

(3.1) 
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f * 
where H = - -7; , and T, = , fori = 1,2,..., k-1. 

\ /-i / <=/+! 

If elements of X* are 1(1) and are cointegrated with a normalized cointegrating vector 

/?'= (1,- ̂  ) then equation (3.2) can be expressed as a vector error-correction model 

(VECM) as follows: 

A%, = 4, + + g,, (3.3) 
i=i 

where 

n = ^g'= "y, r  i (1,-/7;) = (3.4) 
2 ^2%2, 

The y represents the speeds of adjustment while denotes the error-correction terms, 

or the cointegrating residuals. 

3^2. The Band-TVECM (Band-Threshold Vector Error Correction Model) 

Although conventional VAR and VECM have modeling power regarding numerous 

economic and Gnancial phenomena, they can only model linear relationships. In recent time 

series econometrics developments, both the threshold autoregression (TAR) and threshold 

vector error correction model (TVECM) have overcome this drawback. The TAR and 

TVECM have the strength of modeling nonlinear and discontinuous phenomenon. Consider 

a simple three-regime bivariate TVECM for the threshold cointegrating relationship of the 

Treasury and corporate bond rates. The bivariate threshold vector autoregressive (TVAR) 

model for X* is: 
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+ 

0) 
1=1 

k ] 
(3.5) 

+ 

/=1 
k 

4"+Z Â " '  X ,_,+e, (3) 

/=! 

7„(z,_, >c m ) ,  

where 's are bivariate vector white noise processes, k is the autoregressive order, 'a 

are 2 x 1 parameter vectors, and ^4^ 'f are 2 x 2 parameter matrices for regime j = 1,2, 3, 

and for lag i = 1,2,..., k; zm is called the threshold variable; d is called the delay parameter, 

which is positive and usually less than or equal to the lag length k. In general, 

-oo = = oo and 

A,(fU-"<z,_j<cU)) = 
=1,2,3, 

0, ofAgrwMe. 
(3.6) 

If elements of X* are 1(1) and they are cointegrated then equation (3.5) can be 

expressed as a TVECM as follows: 

A%, = 
jfc-i 

+ 

-f 

+no%,_, +^CAZ,_, +g« 
i=i 

/-l 

;„(z, _ j<cn 

/„(^<z,_^<^) 

>^), 

(3.7) 

where = - , and for regime j = 1,2, 3, andi = 1,2,..., 
\ /-I V f-f+I 

k-1. 
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Furthermore, if elements of Xt are cointegrated with a common (across regime) 

normalized cointegrating vector P'= (1,-^) and if the error terms share the same 

variance-covariance structure then the TVECM may be written as: 

<-i j 

<z._, (3.8) 
i= l  

AZ, = 

+ 

+ >c^) + g,, 

where 

yU)/?'=nU) = (i,-A) = 
U)^ 

-AX (3.9) 

andj = 1,2, 3. 

Note that although the three regimes share a common cointegrating vector 

^'= (I,-/);), the speeds of adjustment y^'= (y^,^) are regime speciûc. For example, 

we may observe that # y^ or y^^ # y^ -

The simplest form for the TVECM occurs when k = 1 in equation (3.8), so that all lag 

difference terms drop out of the equation. In this situation, the cointegrating residual /?' 

follows a regime specific AR(1) process or threshold autoregressive (TAR) process: 

with 

= i + = i + -  ̂ y^, 
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where and ^ / Furthermore, is stable within each regime, if 

the stability condition |p^| = |l + < 1 holds for each regime. Again, in equation 

(3.8), with k = 1, the equations will be: 

ax,  =[X" +r" '  px ,_ ,  )/„(;,_,, <<•"')+[/!<=' +/J'/?'X,.,)/2,(c(" <z,„, <=">) j 

It is easier to capture the long-run equilibrium relationship if equation (3.10) is 

rewritten in the following form: 

AX,  =y"> L»'Xm -/i" >„(»„, Sc«>) + r '» \ /?X,_ ,<c'21) 

+r r "\ f i , x„- f l ^„{z ,_ J >c m )+s, .  

More specifically, one has: 

(3.11) 

Ax, 

. .  . . . .  

k,_i - , i/" 3 , 

k,-, - A^,_i 4^, ifz,-d > , 

Set k = 1 in equation (3 .8) to obtain: 

ax, = x, -x,„, = [a™+r"'px,-s K, (z,-- s ="')+k21+>„(='" <z,^<c<2>) 
+ [Ai,i>+7

1!»^X,_1]l„(z,„<>cm)+s,. 

Multiply both sides by /?', then move to die right-hand side, will obtain: 

I'X, =/?'Xw +[/?'A<" +/9><l,/J'Xl.,K(z,-d Sc'^+l^'A™ +A>B)/9'XH][1,(C
I" <Z,_„ <C|2>) 

+ b'Ai," + yS><3,/?'X,_, K, (zw > =") + Pe, • 

Split and e, to each regime to then obtain: 

= [^A« + ̂ X,_, + ̂ /(VX,_, + /?f("t„(z,_j ̂  c^) 

+ + ^X,_, + ^c^) 

+ [^A^ + ^X,_, + /r/"/?X,_, + > <^). 
Collect terms to get: 
/?X, = /yA^+o+^/^^x,., + ^c(')) 

+ [^A^ + (1 + L(c"> < ^ c^) 

+ AW + (1 + ^yO)^X,_, + > ^) 

= ^ + p")/9'X,_,+^. 
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and 

= <  
r ï  

(3) 

4 , - 1  - ^  

.4,-1 "" A ̂2,-1 "" 

+4!\ //"c^ <z,^ <c^, r.(D ,(2) 
'2, ; 
,(3) + 4', {/"2^>C (2) 

The magnitudes and signs of the y's will provide &uitful information regarding the 

equilibrium relationships. Equation (3.11) offers the regime-specific means , which is 

calculated as: 

/?'v4U) y,U) - -
U) ;U) 

- Ayy' i -  ̂  u)  ,U) ' (3.12) 

where (^^, ), and /?'= (I,-/?; ). It is also possible to eliminate the regime 

specific drift in X, through the restriction: 

(3.13) 

where is calculated by (3.12). Note, we may rewrite equation (3.11) as follows with 

z,-i — ^,-1 — "^1,-1 A*2«-l ' 

A^T, = 

,(D 

,(3) 

Z,_1-^ 
(2) 

.2,-1 
(3) 

+ e„ m (3.14) 

+ (/"z,^ >c^. 

Consider the case of d= 1, =0 and ^ - 0 in equation (3.14). This is the Band-

TVECM structure, which is the most popular form in threshold cointegrating applications: 

A%,= 
/"k-i -y]+f,, (/"z,-i 

e , ,  i f cC><z ,_ ;3c^ ,  (3.15) 

r (3) [ z , _ , i / " z , _ i > c ^ .  
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Again, the stability conditions must hold for the outer regimes, i.e., 

I = |l + | < 1, for j = 1 and 3. The interpretation of previous model is: if the 

cointegrating residual (the error-correction term) z,_, = lies within the inner band 

then Xt behaves like a random walk process without the drift, i.e., AY, has no 

tendency reverting to any long-term equilibrium; if z,_, is less than then z, reverts to the 

regime speciûc mean with adjustment coe@icient while AY, adjusts with speed of 

adjustment vector ; if z,_, is greater than then z, reverts to the regime specific mean 

with adjustment coefficient and AY, adjusts with speed of adjustment vector . 

One may expect < 0, > 0, for i = 1,2, because of the force of the error correcting 

toward the long-term equilibrium. 

If the regime specific means of the cointegrating residual z, are equal to the nearby 

threshold values: then (3.15) may be written as: 

It is called the "continuous" model. Furthermore, the "symmetric" threshold model arises 

when the threshold values are symmetric against the origin, i.e., = c, then one 

has: 

-cM+e,, f/" z,_, 

<z,_, AY, = ^g,, (3.16) 

y^[z,_, -c^]+g,, 

+c]+f,, !/" Z,_; <-C, 

AY, — - g,, (3.17) 

If = 0, then one has the EQ-TVECM: 
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AY, = 

+f,, 

g,, <Z ,_1 <c^, •1 
(2 )  

(3.18) 

3.23. Hansen's procedures for testing linearity 

Once it has been determined that Xt is cointegrated with known cointegrating vector 

P, the next step is to determine if the dynamics in the cointegrating relationship are linear or 

exhibits threshold nonlinearity. Hansen (1997,1999) developed a method for testing the null 

hypothesis of linearity versus the alternative of a TAR(m) model, where m denotes the 

number of regimes, based on nested hypothesis tests. Consider the TAR(m) model for 

z,_i = P X,_i : 

z, = y=l, 2,..., /M. (3.19) 

A linear autoregressive model (i.e., TAR(l)) results under the restrictions that =# and 

=/?, V/. Hansen's linearity test is a test of the null hypothesis of TAR(1) against the 

alternative of TAR(m) for some m > 1 using a sup-F (or sup-Wald) test constructed 6om the 

supremum over possible threshold values of the F-statistic: 

(3.20) 

where Sy and S*, denote the sum of squared residuals from the estimation of a TAR(1) model 

and a TAR(m) model, respectively. Hansen provided a simple bootstrap procedure to 

compute ̂ -values for this test. 

Hansen's method for testing linearity in univariate TAR models based on nested 

hypothesis tests can be easily extended to test linearity in multivariate TVECMs. To test the 
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null hypothesis of a linear VECM against the alternative of a TVECM(m) for some m > 1, the 

test statistic is the sup-LR statistic (which is asymptotically equivalent to the sup-Wald) 

constructed from: 

=r(ln(|Z|)-hi(|±.(W|)) (3.21) 

where Ê and Z^(c,f?) denote the estimated residual variance-covariance matrices 6om the 

linear VECM and the m-regime TVECM, respectively. As mentioned in Hansen (1997), the 

distribution of the sup-LR statistic will be non-standard. A bootstrap procedure can be used 

to compute ̂ -values for this test. 

3.2.4. Hansen's procedures for the model specification test 

The approach recently reviewed by Hansen (1999) uses a sequential testing procedure 

based on nested hypotheses. The current research applied Hansen's nested hypotheses tests 

based on unrestricted estimation of TAR models and TVECMs. This research started with a 

typical three-regime continuous symmetric threshold and symmetric adjustment BAND-TAR 

model for z, as well as a three-regime symmetric threshold and symmetric adjustment 

BAND-TVECM for X,. The symmetric BAND-TAR model is nested within an unrestricted 

TAR(3) model, while the symmetric BAND-TVECM is nested within an unrestricted 

TVECM(3). This nested structure enables a systematic specification analysis. 

First consider was determining the number of regimes. Given that linearity is rejected 

in favor of threshold nonlinearity, in order to determine if a TAR(3) model for z, is 

appropriate, Hansen (1999) was applied as well as a test of the null of a TAR(2) model 

against the alternative of a TAR(3) model using the F-statistic: 
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= r 
V ^3 / 

(3.22) 

where & and % denote the sum of squared residuals from the estimation of an unrestricted 

TAR(2) model and an unrestricted TAR(3) model, respectively. Similarly, to determine if a 

TVECM(3) for X* is appropriate one can test the null of a TVECM(2) against the alternative 

of a TVECM(3) using the LR statistic: 

3 = T(ln(| È,(c,^) I) - ln(| Z, (c,«?) j)), (3.23) 

where ^(c,^) and Z^c,^) denote the estimated residual variance-covariance matrices 

from the unrestricted TVECM(2) and TVECM(3), respectively. As with the linearity tests 

discussed previously, the asymptotic distributions of Fz, 3 and ZJfz, 3 are nonstandard and 

bootstrap methods can be used to compute approximate ̂ -values. 

3.3. Model 2: Hansen-Seo Two-Regime Threshold Cointegartion Model 

3.3.1. Introduction 

One pitfall of the Balke-Fomby (1997) procedure is that the authors do not offer a 

formal justification for their residual-based two-step approach. Hansen and Seo (2002) 

proposed a formal test procedure for threshold cointegration and they offered an algorithm to 

estimate model parameters. The Hansen-Seo model is a two-regime vector error correction 

model with only one cointegrating vector and with one built-in threshold effect in the error-

correction term. 

Based on a fully specified joint model, Hansen-Seo derived the maximum likelihood 

estimator of a threshold cointegration model. Under the null hypothesis of linearity, the 
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threshold parameter is not identified, which causes a nuisance parameter problem. To get 

around this problem, the authors based their inference on a Sup-LM (Lagrange Multiplier) 

test statistic. They derived the asymptotic null distribution for this test statistic and discussed 

a bootstrap approximation to the sampling distribution. Two types of bootstrap algorithms 

are provided to approximate the sampling distribution: one is the fixed regressor bootstrap 

and the other one is a residual-based bootstrap. This section focuses on a bivariate threshold 

cointegration analysis based on the Hansen-Seo setting to analyze the dynamic relationships 

between corporate bond and Treasury rates. 

3.3.2. A two-regime threshold cointegration model 

Let xt be a p x 11(1) time series with one p x 1 cointegrating vector p. Let 

w,(p) = P'x, denote the 1(0) error-correction term. Then, a linear vector error correction 

model (VECM) of order (L+l) may be expressed as: 

Ax, =A'X,_,(P) + u,, (3.24) 

where X,_, (P) = [l, w,_,(P), Ax,_,, Ax,_%,..., Ax,_J, with the following dimensions: Xt_i(P) is 

k x 1, where k = p x L + 2, and A is k x p. The error term u* is a p x 1 Martingale difference 

sequence with finite variance-covariance matrix Z = E(u,u)) of dimension p x p. The 

Hansen-Seo approach is used to estimate the parameters (P, A, Z) by maximum likelihood 

estimation given the assumption that the error terms u/s are i.i.d. Gaussian distributed/ 

A two-regime threshold cointegration model may be expressed as: 

 ̂ Hereafter, it will be assumed that one element of a cointegrating vector is 1 and the other is (-&), and the error 
correction term will have the expression (%% - p%%). 
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|A',X,_,(/?) + u,, if w,_,(^)<y, 
Ax t — l 

[A,X,_,(^) + u„ if w,_,(^)>y, 

where y is the threshold parameter. This equation is rewritten as: 

Ax, = AiX,_, (P)d„ (p,y) + A;X,_, (P)d^, (P,y) + u,, (3.25) 

where: d„ (P, y) = I(w,_, (p) < y), d„ (P, y) = I(w,_, (P) > y), and I( ) is the Heaviside indicator 

function. To ensure the nonlinearity, Hansen-Seo, among others, suggested imposing the 

boundary constraint: 

n„<Pr(w,_, <y)<l-%„, (3.26) 

where > 0. Typically, the setting is 0.05 <0.15. Since the u^'s are i.i.d. Gaussian, 

the likelihood function is: 

Ln(Ai, A;,Z,P,y) = -—logjzj- —^]u,(A,, A%,P,y)'Z 'u,(A,, A%,p,y), 
Z Z t=] 

where: u,(A,,A^,p,y) = Ax, - AjX,_,(p)d„(P, y) - A;X,_,(P)d^,(P, y). The maximum 

likelihood estimators (MLEs) (Â,,Â;,Z,p,y) are the values that maximize the likelihood 

function L„(A,,A2,Z,P,y). 

33.3. Estimation procedure 

Step 1: First, concentrate out (A,,A;,Z) by holding (P,y) fixed and compute the 

constrained MLE for (A,,A;,Z). This is done through OLS estimation. Given Gaussian 

error terms, the maximum likelihood estimators are the same as ordinary least squared 

estimators: 
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v1 

Â,(P, Y ) = |  %X,_,(P)X,_,(P)d„(P,y) gX,_,(P)Ax,d„(P,y) 
. t=i 

A2(Ry) = | £XH(P)X,„1(P) d2,(P,Y) XxH(P)Ax,d2l(p,Y) 
J  \  î-1 Î = 1 

(3.27) 

(3.28) 

(3.29) û,(P,7) = u«(Ai(P,Y), A;(P,y),p,y), and È(P,y) = - ̂  û, (P, y)û, (P, 1 
nti 

Then, the concentrated likelihood function is: 

l„(P,y) = L,(A,(P,y), A2(P,t), £(P,y), p, T) = -|log|Ê(P,ï)|-S. (3.30) 

Step 2: Compute the vector of parameters: (P,y). The MLE û, =û,(P,y) are the 

minimizers of log|È(P,y)l and the boundary constraint: < n"'^I(^'x, < y) < 1 - ̂ . The 

MLE for Ai and A% are thus A, = Â,(P,y) and Â% = Â;(p,y). 

t=i 

3.3.4. Application to the term structure of interest rates 

Let xi* be the long rate and x^t be the short rate. Then, a linear cointegrating VAR 

model is: 

'AxJ 'a/ 'AxJ = + 
V^2lV 1^; 

(x,«_,-px2,_i) + 
T„ r,2l 

-r 
1^21 J*2t/ 

(3.31) 

with w,_i = x„_, - PX;,_,. Here, if one sets P = 1 then the error-correction term becomes the 

interest rate spread. A two-regime model Hi will enable all coefficients to differ depending 

upon x„_, -px%_, < y or x„_, - px^,., > y : 

Ax, 'Ax/ ra»'N 'Ax/ 
+ 

\AX;,^ y2"y 
+ 

K'J (X„_, -pX;,_,) + II ^ 12 
T"0) rU) 

V 21 ^ 22 V 

l]t-l 

\^2l-lV 
+ 

u, 

\^2t/ 
,if X„_; -^21-1 
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'Ax,/ 'Ax,/ 
+ 

V^2t/ k'J (%],_, -PXz,_,) + 
y (2) 
^ Il 
r(2) 

\ 21 

lt-1 

21-1/ 

+ 
U, 

,if x„_, >y. 

3.4. Model 3: Enders-Siklos Threshold Cointegration Model 

3.4.1. Introduction 

Standard unit-root and cointegration tests, with their corresponding error correction 

representation, may entail a misspecification error, if the adjustment process is asymmetric. 

Two types of asymmetric tests in the form of threshold autoregressive (TAR) and momentum 

threshold autoregressive (M-TAR) adjustments representations were offered by Enders and 

Granger (1998), and Enders and Siklos (2001). 

3.42. Review of Engle-Granger cointegration test and error correction 

representation 

Conventional models often assume linearity and symmetric adjustment process for 

cointegrated variables. For example, consider the Engle and Granger (1987) two-step 

cointegration test. The first step applies the ordinary least squares method (OLS) to estimate 

the regression model: 

X], = Po + P2%2, + P3X3, + - + (3-32) 

where x% are individual 1(1) processes, Pi's are the parameters, with i = 0,2,..., n, and ^ is a 

stochastic disturbance term that may be serially correlated. 

The second step uses a Dickey-Fuller (1979,1981) type of unit root test applied to the 

OLS estimate of p in the following regression: 
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=pp,_, +e,, (3.33) 

where p., is the residual from the OLS estimate of (3.32) and % is a white noise process. 

In the Engle-Granger cointegration test, the null hypothesis of no cointegration is Ho: 

p = 0. Engle and Granger showed that rejecting the null hypothesis of no cointegration (i.e., 

accepting the alternative hypothesis of HA: -2 < p < 0) implies that the error process in (3.33) 

is stationary with mean zero. This also implies the entire system of xit, x%,..., and x„t are 

cointegrated with a symmetric adjustment mechanism towards the long run equilibrium (or 

the attractor) Po. 

The Granger Representation Theorem suggests that if p # 0 (i.e., the system of x^, xzt, 

..., and Xm are cointegrated) then (3.32) and (3.33) will guarantee the existence of an error-

correction representation in the form of: 

= «,(4,-, - A - - A%3,_1 - - - + fir (3.34) 

Similar representations can be derived for xzt, xgt,. . ., and x„t. 

Enders and Siklos (2001) pointed out that if the adjustment process is, indeed, 

asymmetric then the Engle-Granger cointegration test is misspecified and the error-correction 

mechanism is unable to capture the actual adjustment process. They suggested an alternative 

specification of the error-correction model in the form of threshold autoregressive 

framework. 
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3.4.3. Enders-Siklos cointegration test 

Enders and Siklos (2001) developed asymmetric cointegration tests by incorporating 

threshold autoregressive (TAR) and momentum threshold autoregressive (M-TAR) 

adjustments into the unit-root tests of the residuals of the cointegration regression, such as 

equation (3.32). Assuming the deviations from long run equilibrium behave as a TAR 

process: 

A^i, = —I* )PzHi-i (3.35) 

where It is the Heaviside indicator function, such that: 

4o, 

In the M-TAR model, the Heaviside indicator function Mt is defined as: 

Mo, ifï:;ïo. (33?) 

In general, the asymmetric adjustment coefficients of pi and p% allow a state-

dependent autoregressive decay process. For example, in the M-TAR model: if A|i,_, ^ 0, 

the adjustment is p,n,_, ; while if Ap.,_, < 0 then the adjustment is p^n,.,. Consider equations 

(3.35) and (3.36), the TAR model. If |p%| > |pi|, say pi = -0.2, p% = -0.8 then positive 

deviations from the long-run cointegration equilibrium are more persistent than negative 

deviations. In other words, there is a slow adjustment when the equilibrium error is above 

the attractor, while there is an accelerated adjustment when the equilibrium error is below the 

attractor. This adjustment mechanism captures the feature of "deep" cyclical processes 

documented by Sichel (1993). 
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Consider equations (3.35) and (3.37), the M-TAR model, which allow the 

autoregressive decay to depend on Ann. Again, if |pz| > |pi|, say, pi = -0.2, p% = -0.8 then 

there is little decay when Apt.i is positive, but substantial decay when A^.i is negative; in 

such a situation, increases tend to persist, but decreases tend to revert quickly toward the 

attractor. Hence, the M-TAR model could easily capture the "sharp" movements 

documented in DeLong and Summer (1986) and Sichel (1993). 

Enders and Siklos (2001) offered some extensions to modify the basic threshold 

cointegration model given previously. The first modification is to allow a non-zero drift term 

as the linear attractor, which can be expressed as: 

An, =I,Pi(H,_i -a„) + (l-I,)p2(M,_, -a„) + E„ (3.38) 

where It is the Heaviside indicator function, such that: 

I, = {'' (3.39) 
[0, <a„. 

The second modification involves a drift and linear trend as attractor with the 

expression: 

An, = I,P,bi,_i -a„-a,(t-1)] + (1 -I,)p#,_,-a„-a,(t-1)] + e„ (3.40) 

where It is the Heaviside indicator function, such that: 

Jl, iftlH>aQ+a,(t-l) 

' ifn,_, <ag+a,(t-l). 

The third modiGcation involves higher-order terms of the error process to purge 

possible auto-correlation: 

An, =l,pin,-i+(l-l,)p2n,_i +]Ty;A|i,_i +E,. (3.42) 
i=l 
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To ensure the stationarity of all roots of the characteristic equation of (1 - y%r - . 

- Yp-ii^) = 0 must lie outside the unit circle. More complex model can be built on 

combinations of the above modifications, e.g., an M-TAR model with a non-zero attractor 

with p-th order process can be written as: 

3.4.4. Chan's consistent estimator of the threshold 

Tsay (1989) and Chan (1993) offered methodologies for model building if the 

underlying variables are within the threshold autoregressive framework. Tong (1983) also 

demonstrated that if the adjustment process is asymmetric then the sample mean is a biased 

estimator of the attractor. To rectify this bias, Chan (1993) showed that searching over all 

values of ao, so as to minimize the sum of squared errors from the fitted model, yields a 

super-consistent estimator of the threshold. 

3.4.5. Estimation procedures 

The focus of this section is on applying Enders-Siklos cointegration tests in 

conjunction with Chan's consistent estimate of threshold. The following outlines the 

procedures: 

(3.43) 
i=l 

Mt is the Heaviside indicator function and ao is the linear attractor, such that: 

(3.44) 
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Cage 7. regwok 0 

Regress one of the variables on a constant and the other variable(s) and save 

the residuals sequence (jl,}. Next, set the Heaviside indicator function according to (3.36) 

or (3.37) using t = 0. Estimate a regression equation in the form of (3.35) and record the 

larger of the t statistics for the null hypothesis of p; = 0 along with the F statistic for the null 

hypothesis Ho: pi = pz = 0. Compare the F-statistic with appropriate critical values simulated 

by Enders and Siklos (2001) in Tables 1 or 2. 

2. If the alternative hypothesis of stationarity is accepted, it is possible to test 

for symmetric adjustment (i.e., pi = p%). When the value of threshold is known, Enders and 

Falk (1999) state that bootstrap t intervals and classic t intervals work well enough to be 

recommended in practice. 

Step.). Diagnostic checking of the residuals should be undertaken to ascertain 

whether the Ê, series could reasonably be characterized by a white-noise process. If the 

residuals are serially correlated, return to Step 2 and reestimate the model in the form: 

= I,P A_i +(1-1, )P2M,_, + Y, + " ' + YpAA,_p + e, 

for the TAR model. For the M-TAR case, replace It with Mt as specified in (3.37). Lag 

lengths can be determined by an analysis of the regression residuals and/or using model-

selection criteria such as AIC/BIC. 

Case 2. r&r 

.Sfep 7. Regress one of the variables on a constant and the other variable(s) and save 

the residuals sequence {(!,}. 
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2. For TAR case, the estimated residual series is sorted in ascending order and 

called < jig < - < n?, where T denotes the number of usable observations. Discard the 

largest and smallest 15% of the {p,^} values. Each of the remaining 70% of the values is 

considered as possible thresholds. 

Sfep 3. For each of these possible thresholds, estimate an equation in the form of 

(3.35) and (3.36). The estimated threshold yielding the lowest residual sum of squares is 

deemed to be the appropriate estimate of the threshold. For the M-TAR case, the potential 

thresholds are Ap,^ < Api^ < < Ap?. For each of these possible thresholds, estimate an 

equation in the form of (3.35) and (3.37). The estimate of the threshold is the estimated 

threshold yielding the lowest residual sum of squares. 

Step 4: Reestimate the model by incorporating the estimated threshold. 

J. Inference concerning the individual values of p, and p% and the restriction 

that p, = p; is problematic when the true value of the threshold % is unknown. The property 

of asymptotic multivariate normality has not been established for this case. Chan and Tong 

(1989) conjectured that utilizing a constant estimate should establish the asymptotic 

normality of the coefficients. Enders and Falk (1999) found that the inversion of the 

bootstrap distribution for the likelihood ratio statistic provides reasonably good coverage in 

small samples. 
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CHAPTER 4. DATA 

4.1. Introduction 

This research used monthly averages of daily rates for 10-year constant maturity 

Treasury Note, the Ibbotson Bond Index for 20-year Treasury bonds, and Moody's Aaa and 

Baa seasoned bond indices. The data covered the period from January 1960 to December 

1997, providing a total of 456 observations. These series were selected because of their long 

history and because it would be easier to compare the results with Neal, Rolph and Morris 

(2000, hereafter NRM). The Ibbotson 20-year Treasury Index was incorporated, since the 

30-year constant maturity index does not start until 1977 and the 20-year constant maturity 

index is unavailable between 1987 and 1992. Thus, the Ibbotson Index was used as a proxy 

of long-term (20 years) Treasury bond rates. 

The Moody indices are constructed from an equally weighted sample of yields on 75 

to 100 bonds issued by non-financial corporations. As with other corporate bond indices, the 

Moody indices have some factors that will cause bias. One is the downward bias due to the 

call feature of bonds (Aaa or Baa) included in the indices. Duffee (1998) suggested that this 

embedded option (call feature) would cause a negative relationship between credit spreads 

and non-callable Treasury yields, since a decline in the yields will increase the value of the 

option. 

The second factor that will also cause downward bias is from the construction of the 

corporate bond indices. Usually, the indices are constructed at the end of the month with 

bonds rating Aaa or Baa. If some Baa bonds are downgraded before the end of the month 

then other Baa bonds will replace them. Excluding these downgraded Baa bonds will cause 
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the index to be understated, because the downgraded bonds usually have a greater rise in 

yield than bonds with unchanged ratings. Other factors include tax differentials and trends in 

the credit quality of the indices. The magnitude of this bias is difficult to assess. NRM 

offers a thorough discussion of the pros and cons of the Moody indices and interested readers 

should see their paper for details. 

Table 4.1 provides summary statistics of Moody's Aaa, and Baa corporate bond rates, 

the 10-year Treasury Index (Tsy), and the Ibbotson Index (Ibb). Notice that the means of 

these series are in order from lowest to highest: Tsy, Ibb, Aaa, and Baa. Table 4.1 also 

presents summary statistics for the spreads between the Moody's corporate bond series (Aaa 

and Baa) and the Treasury rates (Tsy and Ibb). 

Table 4.2 calculates the autocorrelations for Tsy, Ibb, Aaa, and Baa. The high degree 

of persistence is likely signaling the presence of a unit root or near unit root process. NRM 

(2000) reports that the levels of the interest rates appear non-stationaiy while the changes 

appear stationary based upon the results of Dickey-Fuller and Phillips-Perron unit root tests. 

These results confirm the conclusions of quite a few studies on the presence of unit roots in 

nominal interest rates. For example, see Stock and Watson (1988), Hall, Anderson and 

Granger (1992), and Enders and Granger (1998) for short-term rates. See Campbell and 

Shiller (1987) and Mehra (1994) for long-term rates. 

The Dickey-Fuller and Phillips-Perron unit root tests test the null of a unit root 

against the alternative that the process is a stationary linear process. The next section reports 

the Enders and Granger (1998) unit root test results, which are appropriate when the 

alternative is a stationary nonlinear process. 
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4.2. Review of the Enders-Granger Unit-Root Test 

The first-order threshold autoregressive (TAR) representation for the zero-mean time 

series {yj, which allows for asymmetric adjustment to the long run equilibrium, is 

formulated as: 

(41)  

I  p , y , t f y , - ,  < o ,  

where e* is a white noise process. 

A sufficient condition for the stationarity of {y*} is -2 < (pi, pz) < 0. If pi = Pz = 0 

then {yj is a standard random walk. One can rewrite the above asymmetric adjustment 

process as: 

Ay, = I,p,y,_i +0-1,)p2y,_, +E,, (4.2) 

where It is the Heaviside indicator function, such that: 

<43) 

The momentum-threshold autoregressive (M-TAR) representation is the same as the 

TAR representation, except the Heaviside indicator function is defined as: 

However, most of the time series {y,} has a non-zero mean ao, then above TAR model 

should be modified as: 

Ay, =i,Pi(y,_i-ao)+(i-i.)p2(y,_i -&o)+G„ (4.2') 

where It is the Heaviside indicator function, such that: 
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ify,_, >a„, (4j') 
[0, if y,., <a„. 

Similarly, for the M-TAR model, the Heaviside indicator function should be: 

jl, ifAy„>a0, ,4.4,, 
[0, if Ay,_, <ag. 

The next section briefly describes the Enders and Granger (1998) procedure for 

testing the unit root null, pi = pi = 0 against threshold autoregressive (TAR) and momentum 

threshold autoregressive (M-TAR) adjustment alternatives under two different types of 

attractor settings. 

4.3. Test procedure 

The attractor y,_; = 0 (or Ay,_, = 0) in equation (4.3) (or (4.4)) is a special case of the 

more general attractors y,_, = a„ (anon-zero constant attractor) or y= a„ + a,(t-1) (a 

trend attractor). Enders and Granger (1998) pointed out that in the more general case, if the 

attractor is known, the data could be transformed so that the attractor y,_, = 0 ( Ay,_, = 0) is 

applicable. Otherwise, one needs to estimate the values of a„ and a, from the data. For the 

current study, visual investigation of the spreads of indices (Aaa - Tsy), (Aaa - Ibb), (Baa -

Tsy) and (Baa - Ibb) suggested that the spreads of indices all have non-zero sample means 

but do not show any time trend pattern. Hence, the asymmetric unit root test for TAR and 

M-TAR adjustments are carried out assuming all the spread series have a non-zero constant 

attractor. 

The test procedure involves the following sequence of steps: 
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Sky 7. De-mean the spreads by removing the sample mean from each interest rate 

differential series, yielding the residual series {y,}. 

Aep 2. Apply OLS to estimate the following regression equation: 

Because {y,} is the "demeaned" series, equation (4.5) is equivalent to 

Ay, = I,p, (y,_i - â„ ) + (1 -1, )p% (y-âj + e,, where â„ is the estimated sample mean of 

the {y,} sequence. The indicator function It will be determined by the type of asymmetry 

under consideration (i.e., TAR or M-TAR specification). Diagnostic checking of the 

regression residuals ( Ê, ), for the purging of autocorrelation and the AIC and SBC criteria are 

used to determine the lag lengths. If the errors in Equation (4.5) are serially correlated, it is 

possible to implement an augmented TAR (or M-TAR) specification for the residuals. 

Therefore, equation (4.5) is replaced by: 

Sfep j. The test statistics for the null hypothesis of nonstationarity: pi = p% = 0, are 

compared with the appropriate critical values in Table 4.3 of Enders and Granger (1998). 

The distribution of the Enders-Granger unit root test statistic depends on the sample 

size and the presence of various deterministic regressors in the attractor: (A) zero attractor, 

(B) non-zero constant attractor, or (C) linear trend attractor. The corresponding statistics are 

the 0 statistic, the 0^ statistic, and the O? statistic for TAR specification (and the 0*, the 

C/ , and the 0? for M-TAR specification.) If the unit root null hypothesis is rejected, the 

restriction of symmetric adjustment (pi = pz) versus the alternative of asymmetric adjustment 

Ay,  =i ,Piy,_i  +( i - i , )p2y,_,  +ë,  (4.5) 

(4.53 
i=l 
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can be tested using standard F-statistics, since the least squares estimates of pi and p% 

converge to multivariate normal distributions, if the {y,} sequence is stationary (Tong 1983). 

However, Enders and Falk (1998) and Hansen (1997) showed that small sample properties of 

the OLS estimates of pi and pz have inflated standard errors and the OLS estimates may have 

poor convergent properties. As such, inference concerning the individual values of p% and pz 

is problematic. Hence, it is not appropriate to implement a simple t-test. 

4: Tong (1983) demonstrated that, if the adjustment process is asymmetric, the 

sample mean is a biased estimate of the attractor. To rectify this bias, Chan (1993) showed 

that selecting ao to minimize the sum of squared errors from the fitted model yields a super-

consistent estimate of the threshold. Since the spread of indices all have non-zero means and 

one has no prior information about the true value of the attractor, it is appropriate to apply 

this method in conjunction with the threshold (and momentum threshold) autoregressive 

estimation. Referring to the resulting model as the consistent threshold autoregressive (C-

TAR and momentum-consistent threshold autoregressive, M-C TAR) model, to distinguish it 

from TAR (and M-TAR) model, fit with the biased estimate of the attractor. In the C-TAR 

model, the Heaviside indicator function has the form: 

(4.6) 

While in this M-C TAR model, the Heaviside indicator function has the form: 

(4.6') 

where ao is the nonzero constant attractor. 



www.manaraa.com

51 

. Results 

The following results are based on the data analysis: 

1. This study focused on four pairs of yield spreads: (Aaa, Tsy), (Aaa, Ibb), (Baa, Tsy), 

and (Baa, Ibb). Tables 4.4 to 4.7 report five types of unit root tests: Dickey-Fuller 

Test, Threshold Autoregressive Test (TAR), Momentum Threshold Autoregressive 

Test (M-TAR), Consistent Threshold Autoregressive Test (C-TAR) and Momentum-

Consistent Autoregressive Test (M-C TAR). 

2. At the 5% significance level, with sample size of 500, the critical value is -2.87 for 

the Dickey-Fuller test. Entries, in the brackets of the third row-the third column 

of Tables 4.4 to 4.7, report the t-statistics for the Dickey-Fuller tests for the current 

study: -3.462 (-6.505, -2.958 and -3.126) for the yield spread of (Aaa, Tsy) ((Aaa, 

Ibb), (Baa, Tsy), and (Baa, Ibb)). Since all test statistics are greater than the critical 

value (in the absolute value sense), it is possible to reject the null of a unit root 

process. That is, the evidence indicates that the yield spreads are stationary for all 

four pairs. This finding is consistent with the work of Enders and Granger (1998). 

However, the motivation for the Enders-Granger study was that they were concerned 

that failure to reject the unit root null could result from the lack of power against 

threshold stationary alternatives. In the current study, the unit root null is rejected. 

Moreover, the estimate of the adjustment parameter of p (the parameter estimate 

reported in the second row-the third column) lies between the estimate of p, and p% 

(reported at the third and fourth columns, the fourth, sixth, eighth, and tenth row) as 

expected. 
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3. The residual sequence obtained from the first step of the procedure is to St the TAR 

and M-TAR models using the threshold a„ = 0. The AIC and BIC diagnostic 

statistics select two lags for the yield spread of the (Aaa, Tsy) and (Baa, Tsy) pairs, 

one lag for the yield spread of the (Aaa, Ibb) pair, and three lags for the yield spread 

of the (Baa, Ibb) pair. For each spread, the optimal lag lengths are consistent across 

all four models. 

4. The statistic 0, in the sixth column of Tables 4.4 to 4.7 (under the column heading 

0), reports the test of the unit root null hypothesis: p, = p% = 0. At the conventional 

5% significance level and at sample size of 500, the hypothesis p, = p% = 0 is rejected 

for all four pairs of yield spreads. This conclusion is drawn by comparing test 

statistics to the appropriate critical values of 0^ and 0* (4.56 and 4.95, 

corresponding to TAR and M-TAR, respectively). For example, the test statistic 0 is 

6.105 (7.621) for the TAR (M-TAR) specification of yield spread pair (Aaa, Tsy). 

Note that the only exception is the M-TAR specification for the (Baa, Ibb) pair. In 

addition, notice that these results are consistent with the results from the Dickey-

Fuller tests (as stated in result #2). 

5. Given the conclusion of the stationarity of the yield spreads, the standard F-tests of 

the null hypothesis of symmetric adjustment: p, = p% are conducted. The seventh 

columns of Tables 4.4 to 4.7 report the test results. In general, under TAR and M-

TAR specifications, the null hypothesis of p, = p% was not rejected, with only two 

exceptions. The test results rejected the symmetry hypothesis for the yield spread 
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pairs of (Aaa, Tsy) and (Baa, Tsy), under the M-TAR. specification, and hence 

concluded asymmetric adjustments in the process of yield spreads, at the 10% 

significance level. Under the C-TAR specification, the test results rejected the null of 

symmetry at 10% significance level for the pairs of (Aaa, Tsy) and ((Baa, Tsy). 

Furthermore, under the M-C TAR specification, the test results rejected the null of 

symmetry: p, = p^ at conventional 5% significance level with only one exception of 

(Baa, Ibb) yield spread pair. 

6. As measured by AIC and BIC, the selected asymmetric model, which incorporates the 

consistent threshold estimator, fits the data marginally better than all other models. 

Overall, the asymmetric specification yields a smaller AIC and BIC than the 

symmetric model. 

7. The results indicate that the yield spreads are stationary and the adjustment 

mechanisms are asymmetric for the M-C TAR model. However, the TAR and M-

TAR models do not support asymmetry. In general, TAR specification can capture 

aspects of "deepness", i.e., -1 < p, < p% < 0, the negative phase will tend to be more 

persistent than the positive phase. Three pairs of yield spreads with TAR 

specifications capture this characteristic except the pair of (Aaa, Tsy). Furthermore, 

the estimates infer four (three) yield spreads M-C TAR (M-TAR) processes capture 

the sharpness of the series, in which the autoregressive decay is relatively sharp, when 

it is decreasing rather than when it is increasing (i.e., |p,| < |p%| ). 
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8. Last, the M-C TAR model offers evidence of asymmetric adjustments that is in 

agreement with the findings of nonlinearities and mean-reversion of Jones (1999), for 

same sample period. 

The empirical results are reported and discussed in Chapter 5. 
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Table 4.1. Summary statistics 

Mean Std Error Minimum Maximum 

Aaa 8.1418 2.6075 4.1900 15.4900 

Baa 9.1475 2.9730 4.7800 17.1800 

Tsy 7.4582 2.5751 3.7100 15.3200 

Ibb 7.5808 2.5389 3.8031 14.8236 

AAaa 0.0047 0.2425 -1.1800 1.2900 

ABaa 0.0044 0.2188 -1.0200 1.1500 

ATsy 0.0024 0.3079 -1.7600 1.6100 

AIbb 0.0035 0.3218 -1.6403 1.1380 

Aaa-Tsy 0.6836 0.3772 -0.1700 1.6000 

Aaa-Ibb 0.5610 0.3511 -0.5273 2.0190 

Baa-Tsy 1.6893 0.6440 0.2900 3.8200 

Baa-Ibb 1.5666 0.6634 0.3544 4.1890 

Note: The statistics are based on monthly data from 1960:1 to 1997:12. The Aaa and Baa 
series are from Moody's, the Tsy (10-year Treasury series) is a constant maturity series from 
the Board of Governors and Ibb is Ibbotson 20-year Treasury index. 
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Sample autocorrelations 

Aaa Baa Tsy Ibb 

Lag CoefR Q-Stat CoefH Q-Stat CoefB Q-Stat CoefR Q-Stat 

1 0.996 455 0.997 457 0.993 452 0.992 452 

2 0.988 904 0.992 909 0.981 895 0.983 896 

3 0.981 1348 0.986 1357 0.971 1330 0.974 1333 

4 0.975 1788 0.980 1801 0.961 1756 0.968 1766 

5 0.969 2223 0.973 2240 0.952 2176 0.961 2194 

6 0.962 2652 0.966 2673 0.941 2587 0.954 2616 

Note: The statistics are based on monthly data from 1960:1 to 1997:12. The Aaa and Baa 
series are from Moody's, the 10-year Treasury series is a constant maturity series from the 
Board of Governors and the Ibb is from Ibbotson 20-year Treasury index. The Box-Ljung Q-
Statistic tests the null hypothesis that the series is not serially correlated. This statistic is 
distributed %(n), where n is the number of lags. The null hypothesis is rejected at a 
significance level of less than 0.1% for all lags. 
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Table 43. The critical values for rejecting the null hypothesis of a unit root 

(A). No estimated deterministic components 

0 statistic 0* statistic 

Sample size 90% 95% 99% 90% 95% 99% 

250 3.10 3.82 5.53 2.68 3.41 5.10 

1,000 3.04 3.75 5.36 2.51 3.21 4.85 

(Source of critical values: Enders and Granger (1998), Table 1, page 306.) 

(B). Estimated constant attractor 

Op statistic 0p statistic 

Sample size 90% 95% 99% 90% 95% 99% 

250 3.74 4.56 6.47 4.05 4.95 6.99 

1,000 3.74 4.56 6.41 4.05 4.95 6.91 

(C). Estimated trend attractor 

0? statistic 0y statistic 

Sample size 90% 95% 99% 90% 95% 99% 

250 5.18 6.12 8.23 5.64 6.65 8.85 

1,000 5.15 6.08 8.12 5.60 6.57 8.74 
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Table 4.4. Unit-Root tests for Aaa-Tsy (sample period = 1960:1 to 1997:12, n = 456) 

Model Lag Pi P2 AIC/BIC» o" Q(4/ 

Dickey- 2 -0.059 939/956 1.424 

Fuller (-3.462)= (0.840) 

TAR 2 -0.051 -0.067 937/954 6.105 0.227 1.386 

âg = 0.6836 (-2.232) (-2.755/ (0.634) (0.847) 

M-TAR 2 -0.025 -0.085 936/953 7.621 3.180 1.468 

&Q = 0.6836 (-0.993) (-3.799) (0.075) (0.832) 

C-TAR 2 -0.037 -0.102 936/952 7.750 3.432 1.390 

â0 = 0.2600 (-1.810) (-3.548) (0.065) (0.846) 

M-C TAR 2 -0.034 -0.135 932/949 9.505 6.851 1.807 

âg =0.5936 (-1.786) (-4.016) (0.009) (0.771) 

Note: Aaa denotes the Moody's corporate bonds, and Tsy denotes the Treasury notes. 
* AIC = T*ln(residual sum of squares) + 2*n; BIC = T*ln(residual sum of squares) + 
n*ln(T), where n = number of regressors and T = number of usable observations. 
^ Entries in this column are the sample F-statisties for testing the null of p% = p% = 0. 
^ Entries in this column are the sample F-statistics for the null hypothesis that adjustments 
are symmetric. The corresponding significance levels are contained in brackets. 
^ Q(4) is the Ljung-Box statistics for the joint hypotheses of no serial correlation among the 
first four residuals. 
" Entries in the brackets of this column are the t-statistics for the null hypothesis p% = 0. 
^Entries in the brackets of this column are the t-statistics for the null hypothesis p% - 0. 
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Table 4.5. Unit-Root tests for Aaa-Ibb (sample period = 1960:1 to 1997:12, n = 456) 

Model Lag Pi P2 AIC/BIC* P i = P z °  Q(4)' 

Dickey- 1 -0.228 1497/1510 5.152 

Fulle (-6.505)= (0.272) 

TAR 1 -0.233 -0.221 1494/1507 21.174 0.031 5.169 

âg = 0.5608 (-5.390) (-4.034/ (0.861) (0.270) 

M-TA 1 -0.237 -0.218 1494/1506 21.202 0.081 5.216 

â„ = 0.5608 (-5.128) (-4.285) (0.776) (0.266) 

C-TAR 1 -0.241 -0.207 1497/1510 21.297 0.255 5.161 

i0 = 0.7000 (-5.567) (-3.817) (0.614) (0.271) 

M-C TAR 1 -0.200 -0.408 1493/15 23.881 4.980 4.359 

â„ = 0.3508 (-5.375) (-4.648) (0.026) (0.360) 

Note: Aaa denotes the Moody's corporate bonds, and IBB denotes the Ibbotson Treasury 
Index. 
* AIC = T*ln(residual sum of squares) + 2*n; BIC = T*ln((residual sum of squares) + 
n*ln(T), 
where n = number of regressors and T = number of usable observations. 

^ Entries in this column are the sample F-statistics for testing the null of p% = = 0. 
^ Entries in this column are the sample F-statistics for the null hypothesis that adjustments are 
symmetric. The corresponding significance levels are contained in brackets. 

^ Q(4) is the Ljung-Box statistics for the joint hypotheses of no serial correlation among the 
first four residuals. 
" Entries in the brackets of this column are the t-statistics for the null hypothesis pi = 0. 
^ Entries in the brackets of this column are the t-statistics for the null hypothesis p% = 0. 
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Table 4.6. Unit-Root tests for Baa-Tsy (sample period = 1960:1 to 1997:12, n = 456) 

Model Lag Pi P2 AIC/BIC* o" Pi = Pz^ Q(4/ 

Dickey- 2 -0.038 1193/1209 4.715 

Fuller (-2.958)' (0.318) 

TAR 2 -0.046 -0.029 1190/1206 4.602 0.452 4.716 

&o =1.6893 (-2.658) (-1.496/ (0.502) (0.318) 

M-TAR 2 -0.006 -0.069 1187/1203 7.326 5.795 5.124 

â „ =  1 . 6 8 9 3  (-0.302) (-3.810) (0.016) (0.275) 

C-TAR 2 -0.062 -0.016 1190/1206 5.982 3.159 4.430 

â„ = 2.2200 (-3.347) (-0.902) (0.076) (0.351) 

M-C TAR 2 0.000 -0.098 1179/1196 11.269 13.531 5.252 

a, =1.6393 (0.025) (-4.747) (0.000) (0.262) 

Note: Baa denotes the Moody's corporate bonds, and Tsy denotes the Treasury notes. 
* AIC = T*ln(residual sum of squares) + 2*n; BIC = T*ln((residual sum of squares) + 
n*ln(T), 
where n = number of regressors and T = number of usable observations. 
Entries in this column are the sample F-statistics for testing the null of pi = p% = 0. 

^ Entries in this column are the sample F-statistics for the null hypothesis that adjustments are 
symmetric. The corresponding significance levels are contained in brackets. 

* Q(4) is the Ljung-Box statistics for the joint hypotheses of no serial correlation among the 
first four residuals. 
" Entries in the brackets of this column are the t-statistics for the null hypothesis pi = 0. 
^ Entries in the brackets of this column are the t-statistics for the null hypothesis pz = 0. 
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Table 4.7. Unit-Root tests for Baa-Ibb (sample period = 1960:1 to 1997:12, n = 456) 

Model Lag Pi Pz AIC/BIC* Pl=P2^ W)' 

Dickey- 3 -0.065 1617/1638 1.952 

Fuller (-3.126)= (0.745) 

TAR 3 -0.070 -0.057 1613/1634 4.935 0.101 1.938 

âg =1.5664 (-2.698) (-1.719/ (0.751) (0.747) 

M-TAR 3 -0.060 -0.069 1617/1638 4.905 0.043 1.941 

âg =1.5664 (-2.009) (-2.386) (0.836) (0.747) 

C-TAR 3 -0.086 -0.038 1616/1636 5.594 1.391 1.797 

â0 = 2.1800 (-3.147) (-1.243) (0.239) (0.773) 

M-C TAR 3 -0.046 -0.102 1616/1636 5.697 1.591 1.856 

a0 = 1.5064 (-1.796) (-2.819) (0.208) (0.762) 

Note: Baa denotes the Moody's corporate bonds, and IBB denotes the Ibbotson Treasury 
Index. 
" AIC = T*ln(residual sum of squares) + 2*n; BIC = T*ln((residual sum of squares) + 
n*ln(T), 
Wiere n = number of regressors and T = number of usable observations. 

^ Entries in this column are the sample F-statistics for testing the null of pi = p% = 0. 
^ Entries in this column are the sample F-statistics for the null hypothesis that adjustments are 
symmetric. The corresponding significance levels are contained in brackets. 
0(4) is the Ijung-Box statistics for the joint hypotheses of no serial correlation among the 

first four residuals. 
= Entries in the brackets of this column are the t-statistics for the null hypothesis pi = 0. 
^Entries in the brackets of this column are the t-statistics for the null hypothesis pi = 0. 
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chapters. estimation results 

This chapter reports the estimation results of the three threshold cointegration models 

introduced in Chapter 3. 

5.1. Results from the Lo-Zivot Three-Regime Model 

5.1.1. Introduction 

The models of threshold cointegration were estimated and tested using the monthly 

(1960:1-1977:12) interest rate series described previously in this research. The bivariate 

systems of Aaa or Baa corporate bond interest rate indices relative to a benchmark rate were 

considered. Either the 10-year Treasury note index or the Ibboston corporate bond index was 

selected as the benchmark. Let x%,t be the Moody's (Aaa or Baa) corporate bond index and 

let xi,t be the benchmark rate. With two corporate bond indices and two benchmark rates, 

there are four bivariate systems. The results reported in the data description section 

suggested that xi,t and x%t are cointegrated with a cointegratng vector [1, -1]'. Accordingly, 

for each bivariate system one may construct the rate differential (i.e., cointegrating residual), 

defined as 

W|_l =PX,_; X2,_l, (5.1.1) 

where X, = (x, ,, x% , ). 

5.1.2. Empirical results: Model selection 

Since the goal was to determine whether a three-regime model could describe credit 

dynamics, the focus was on the alternative hypothesis of a TVECM(3) model. Tables 5.1.1 
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and 5.1.2 summarize the results from estimating the TVECM(3) model for four bivariate 

systems with lag specifications equal to one and two, respectively, and test results of this 

model against the null of a simple VECM. Since the threshold effect has content only if each 

regime has a minimum number of observations, the restriction was imposed that the 

threshold values of w^ fall between the 15-th and 85-th percentiles of w,.]. Then, the grid 

was searched as defined by all points implied by the data. Details of the estimation strategy 

are presented in Appendix A. 

In Tables 5.1.1 and 5.1.2, "1* regime obs" (2°^ regime obs, and 3"* regime obs) report 

the number of observations that are estimated to fall into the first regime (the second regime, 

and the third regime, respectively). "CI hat" and "c2 hat" are the estimated threshold values 

(i.e., c, andc,). 

Hansen's (1997) log-likelihood test was applied to test the null hypothesis of a linear 

VECM against the alternative of a TVECM(3). LRij is the sup-LR test statistic. The'Up­

value" represents the p-value that is calculated by the fixed regressor bootstrap method 

described by Hansen and Seo (2002). All p-values were computed with 1000 simulated 

replications^. 

Tables 5.1.1 and 5.1.2 indicate that the estimated thresholds for Ibb vs. Aaa are nearly 

the same for both lag lengths. The estimated thresholds are lower for the Tsy vs. Aaa than 

for the Tsy vs. Baa and they are lower for the Ibb vs. Aaa than for the Ibb vs. Baa. In 

general, they are higher for the Tsy vs. Aaa than for the Ibb vs. Aaa, and they are higher for 

the Tsy vs. Baa than for the Ibb vs. Baa. The null of no threshold effects cannot be rejected 

(at conventional significance levels) for the Ibb vs. Aaa or the Ibb vs. Baa pairs for either lag 

* The results are also reported with 5000 simulation replications for sensitivity testing. 
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length. The no threshold null cannot be rejected for the Tsy vs. Aaa or Tsy vs. Baa pairs for 

lag length one, but the null of no threshold ejects can be rejected for the Tsy vs. Aaa or Tsy 

vs. Baa pairs, when the lag length is two. The large increases in the LR statistic that occur in 

each case, when the lag length increases from one to two, suggest that there are important 

adjustment dynamics that are not captured by the first-order model. Focusing on the second-

order model, the evidence for the TVECM(3) is mixed: it is favorable for the Tsy vs. Aaa and 

Tsy vs. Baa pairs, but is unfavorable for the Ibb vs. Aaa and Ibb vs. Baa pairs. 

5.1.3. Empirical results: Estimated equations of the TVECM(3) 

This section reports and discusses the estimates of the four TVECM(3)s, estimated 

with lag lengths one and two. 

Part A. Lag length set to one (in levels): 

(i) For Tsy vs. Aaa, the estimated TVECM(3) is given in equations (5.1.2) and (5.1.3): 

— 0 .39 +  0 .47w,  |  +Uj t ,  

(0.16) (0.21) 

w,_, 3 0.54, 

0.11-0.16w,_, +u%, 

(0.04) (0.12) 

0.54 <w,_, ^ 0.95, (5.1.2) 

— 0.04 — 0.00W[_, +U],, 
(0.17) (0.14) 

w,_, >0.95, 

and 
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^Tmy.t  -

t-1 + Ult ' 
w,_, ^ 0.54, 

(0.05) (0.15) 

0.22 + 0.16w+ u^,, 0.54 <w,_, <0.95, 

(0.21) (0.18) 

— 0.24 + 0.28w+U],, 

(0.13) (0.16) 

>0.95. 

(ii) For Tsy vs. Baa, the estimated TVECM(3) is given in equations (5.1.4) and (5.1.5): 

Ar*.., = ^ 

0.19 — 0.12wt_| + ult, 

(0.13) (0.08) 

0.06 + 0.14w,_, +U;,, 

0.46-0.20w,_, + U3,, 
(0.14) (0.05) 

<1.21, 

1.21 <w,_, ^2.13, 

w,_,  >2.13,  

(5.1.4) 

-0.07 + 0.12w,_, +u„, 

(0.12) (0.12) 

0.32 — 0.13w,_,  +  Ujt  i  

(0.21) (0.08) 

0.14-0.08w,_, +u^, 

(0.09) (0.05) 

w,_, ^1.21, 

1.21 <w,_, ^2.13, 

>2.13. 

(5.1.5) 

(iii) For Ibb vs. Aaa, the estimated TVECM(3) is given in equations (5.1.6) and (5.1.7): 
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Aaa, î 

0.09 — 0.24wt-1 + ult, 

(0.15) (0.28) 

0.21-0.48w,_^ + 

(0.04) (0.13) 

0.24-0.35w,_, + U],, 
(0.08) (0.07) 

^ 0.40, 

0.40 <w^ ^ 0.70, 

w,_i > 0.70, 

(5.1.6) 

and 

Ar, Ibb, t 

0.01 + 0.07w,_; +u if 

0.10 — 0.07 wt_, + u?l, 

(0.12) (0.11) 

0.23-0.43w,_, 4-U),, 
(0.10) (0.19) 

w,_, ^ 0.40, 

0.40 <w,_, <0.70, 

w,_, >0.70. 

(5.1.7) 

(iv) For Ibb vs. Baa, the estimated TVECM(3) is given in equations (5.1.8) and (5.1.9): 

- 0.16 + 0.1 lw,_, +u„, 

(0.18) (0.11) 

0.01 + 0.06w,_, +U2,, 

(0.07) (0.07) 

w,_, ^1.28, 

1.28 <w,_, ^ 2.02, (5.1.8) 

0.36-0.18w,_, +U3,, 
(0.12) (0.05) 

w,_, > 2.02, 
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-0.03 + 0.05w,_, +u„, 

(0.11) (0.11) 

-0.26 + 0.09w^ + u^, 

' (0.19) (0.07) 

-0.02 +0.0 lw,_, + u^, 

(0.11) (0.07) 

^ 1.28, 

1.28 <w,_, <2.02, (5.1.9) 

w > 2.02. 

Part B. Lag length set to two (in levels): 

For Tsy vs. Aaa, the estimated TVECM(3) is given in equations (5.1.10) and (5.1.11): 

0.21 -0.43w,_,-0.19Ar^,_,+0.59Ar^,_, + u,„ w,_, <0.39, 

(0.14) (0.24) (0.21) (0.17) 

Ar Aaa.t 

0.06 - 0.07w,_, -0.93Ar^,_, + 1.03Ar^,_, +u^,0.39 <w,_,^ 0.74, (5.1.10) 

(0.05) (0.0) (0.21) (0.18) 

and 

^Tv.' = 

0.02w,_, -0.02Ar^,_i +0.3lAr^+ u^„ > 0.74, 

(0.07) (0.07) (0.15) (0.11) 

-0.04+0J0w,_,  -1 .08Ar^,_,  +1.09Ar^,  w,_,  <0.39,  

(0.07) (0.27) (0.28) (0.24) 

-0.04 + 0.06w,_, -0.07Ar^,_, +0.38Ar^_,_, +11%,, 0.39 <w,_, ^0.74, (5.1.11) 

(0.10) (0.09) (0.21) 

0.20-0.38w,_, -0.05Ar^,_, +0.50Ar^ ,_,+u^, w,_, >0.74. 

(0.10) (0.17) (0.15) (0.13) 



www.manaraa.com

68 

For Tsy vs. Baa, the estimated TVECM(3) is given in equations (5.1.12) and (5.1.13): 

0.21 - 0.15w-1.03Ar^,_, + 0.99Ar^,_, + u„, w,_, < 1.68, 

(0.38) (0.20) (0.21) (0.15) 

Argw.« = 
0.01 + O.OOw+ 0.14Ar^,_, + 0.42Ar^.,_, + u^„ 1.68 <w,_,^ 2.13, (5.1.12) 

(0.04) (0.04) (0.12) (0.09) 

0.21-0.09w,_, +0.20Ar^,_, +0.16Ar^,_| + u^, 

(0.13) (0.05) (0.10) (0.07) 

w,_, >2.13, 

and 

-0.03 + 0.04w,_i - 0.12Ar^,_, + 0.43^+ u^,, w,_, ^1.68, 

(0.07) (0.06) (0.19) (0.14) 

0.09-0.02w,_, -0.10Ar^,_, + 0.36Ar^,_, + u,„ 1.68 <w,_, ^2.13, (5.1.13) 

(0.20) (0.08) (0.16) (0.11) 

0.29-0.17w,_, -0.18Ar^,_, +0.50Ar^,_, + Ug„ w,_, >2.13. 

(0.24) (0.13) (0.13) (0.10) 

For Ibb vs. Aaa, the estimated TVECM(3) is given in equations (5.1.14) and (5.1.15): 

0.10-0.25w,_, + 0.01Ar^,_, -0.026%*,.+ u„, w,_, <0.40, 

(0.16) (0.28) (0.12) (0.12) 

0.04 - 0.06w,_,+0.19Ar^,_,+0.46Arm,.,_i + U2,,  0.40 <w,_,^ 0.70, (5.1.14) 

(0.03) (0.11) (0.10) (0.07) 

0.09-0.10w,_,-0.1 lAr^,_, +0.54/%*,_, + u,„ w,_, >0.70, 

(0.07) (0.06) (0.06) (0.05) 

Ar Aaa,t 

and 
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Ar, Ibb, t 

-0.06 + 0.24w,_, +0.14Ar^,_, + 0.14Ar^,_,+U;,, w,_, <0.40, 

(0.06) (0.21) (0.18) (0.13) 

0.03 + 0.03w,_, -0.13Ar^,_, + 0.22Ar^,_, + 0.40 <w,_, ^ 0.70, (5.1.15) 

(0.12) (0.12) (0.12) (0.09) 

0.08-0.16w,_, +0.01Ar^,_, + 0.38Ar^+ u^, w,_, >0.70. 

(0.09) (0.15) (0.07) (0.07) 

(iv) For Ibb vs. Baa, the estimated TVECM(3) is given in equations (5.1.16) and (5.1.17): 

— 0.04 + 0.03w,_, +0.03Afg^,_, + 0.27Ar^,_, + u,,, <1.14, 

(0.14) (0.10) (0.11) (0.09) 

Ar. 
0.01 + 0.02w,_i + 0.26Arg^+ 0.33Ar^,,_, + U;,, 1.14<w,_, ^ 1.94, (5.1. 

(0.06) (0.07) (0.12) (0.08) 

0.02 - 0.03w,_i + 0.09Arg_ ,_, + 0.34Ar^+ u^, w,_, >1. 

(0.08) (0.03) (0.06) (0.04) 

and 

Ar, Ibb, t 

0.02 + O.OOw+ 0.13Arg^ — 0.14Arg*+ u^, ^1.14, 

(0.13) (0.14) (0.26) (0.17) 

-0.07 + 0.02w-0.34ATg^,_, +0.08Ar^+"20 1 14<w,_, ^ 1.94, (5.1.17) 

(0.18) (0.07) (0.12) (0.08) 

-0.04 + 0.03w,_, +0.26Ar^,_, +0.46Ar^,_i +u,,, > 1.94. 

3.05) (0.05) (0.04) 

5.1.4. Conclusions 

In summary, with lagged term set to two in levels, one generally finds evidence for 

asymmetry in the adjustment of interest rates. For example, Equations (5.1.12) and (5.1.13) 
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summarize the estimated speed of adjustment parameters for the TVECM(3) of the pair Tsy 

vs. Baa. The estimated coefficient of the error-correction term in the third-regime for 

benchmark rate (Tsy) is relatively large and negative (-0.17), while the estimate in the third-

regime of the error-correction term for corporate bond index (Baa) is also negative (-0.09). 

Moreover, the estimated coefficient of the error-correction term in the first-regime for Tsy is 

positive (0.04), but the estimate in the first-regime of the error-correction term for Baa is 

negative (-0.15). Apparently, rates in the benchmark tend to "catch up" to rates in the 

corporate bond index in response to deviations, while the rates in corporate bond index are 

less affected. 

For lag specification one in levels, all of the long rate equations (Aaa or Baa) in the 

third-regime have the expected signs (negative) for their error correction terms coefficients. 

That is, the long rates (Aaa, Baa) tend to adjust downward to the equilibrium band when the 

spread (i.e., the cointegrating residual) is greater than the second (and the larger) estimated 

threshold. This tendency is not as noteworthy for the short rate (Tsy or Ibb) equations (two 

of the coefficients of error correction terms are negative, while two of them are positive.) 

In addition, for lag specification two in levels, all of the long rate equations (Aaa or 

Baa) in the third-regime have the expected negative signs for their error correction terms 

coefficients. In contrast, the short rate (Ibb) equation (5.1.17) shows that the error correction 

term coefficient in the third regime is the only one error correction term coefficient that 

violates the negative sign expectation. 

The aforementioned eight TVECM(3)s are used to conduct forecasting performance 

evaluations in Chapter 6. 
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Table 5.1.1. Lo-Zivot 3-regime model with lag = 1 in levels 

Tsy vs. Aaa Tsy vs. Baa Ibb vs. Aaa Ibb vs. Baa 

regime obs 178 114 169 177 

2™" regime obs 171 236 167 178 

3"" regime obs 106 105 119 100 

CI hat 0.54 1.21 0.40 1.28 

C2 hat 0.95 2.13 0.70 2.02 

LRu 20.67 20.53 12.08 18.84 

p-value* 0.197 0.218 0.833 0.345 

p-value** 0.188 0.231 0.832 0.349 

Note: 

* Fixed regressor bootstrap with 1000 simulation replications. 

** Fixed regressor bootstrap with 5000 simulation replications. 

Table 5.1.2. Lo-Zivot 3-regime model with lag = 2 in levels 

Tsy vs. Aaa Tsy vs. Baa Ibb vs. Aaa Ibb vs. Baa 

1* regime obs 121 234 168 131 

2"^ regime obs 131 115 167 212 

3"" regime obs 202 105 119 1 1 1  

CI hat 0.39 1.68 0.40 1.14 

C2hat 0.74 2.13 0.70 1.94 

LRu 43.89 53.90 20.02 26.00 

p-value* 0.022 0.000 0.869 0.567 

p-value** 0.017 0.002 0.861 0.559 

Note: 

* Fixed regressor bootstrap with 1000 simulation replications. 

** Fixed regressor bootstrap with 5000 simulation replications. 
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52. Results from the Hansen-Seo Two-Regime Model 

5.2.1. Introduction 

Let r@,t be the Treasury rate (or the Ibboston bond index) and ry,t be the corporate Aaa 

(or Baa) bond index. The results of the data description section suggest that r*,t and n,,t are 

cointegrated. A linear cointegrating VAR model has the vector error-correction 

representation: 

'Ar„/ '«r 
~£-

<^2 y J*2/ 

T„ 'AS,, 
\ 

t-1 
+ + 

^22/ Aa, t-U J*2t/ 

(5.2.1) 

where T,, (L) is a polynomial in the lag operator L for i, j = 1,2. Here, if one sets (3 = 1, then 

the error-correction term becomes the usual interest rate spread. 

However, as suggested previously, linearity may be an inappropriate assumption. 

This section reports the estimates obtained from fitting a two-regime threshold cointegration 

model to describe the dynamics of the Treasury rate and the corporate bond index. 

The models of threshold cointegration were estimated and tested using the monthly 

interest series of Neil, Ralph and Morris (2000, hereafter NRM). After NRM, the following 

period was used: 1960:1 to 1997:12, which totaled 456 monthly observations. For the 

selection of the VAR lag length, it was noticed that the AIC and BIC consistently selected a 

lag length equal to two for the pair of Tsy and Aaa. This was the lag length selected for both 

the linear VECM and the threshold VECM, whether the cointegration parameter p was fixed 

at unity or estimated from the data. However, for the other interest rate pairs, the lag 

selection process recommends a lag length equal to one. For robustness, the results for both 

one-lag and two-lag TVECMs are reported. 
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5.2.2. Estimation results 

Table 5.2.1 summarizes the main results from fitting the threshold VECM to the four 

interest rate spreads for lag lengths one and two months and for P set to one and for P 

estimated from the data. In addition to reporting the AIC and BIC for these estimated 

models, Table 5.2.1 includes the following information. The estimated threshold value for 

each spread is listed on the line labeled "Gamma hat", while the estimated p is listed in Part 

B of Table 5.2.1, on the line labeled "Beta hat." Note that the cointegrating relationships are 

normalized with the coefficient on Aaa and Baa bond rates set to unity, so that p-hat is the 

estimated coefficient on Tsy or Ibb in the cointegrating relationship. The entries on line 

labeled "1* regime obs" denote the proportion of observations for which it.t - P r* ^ y and 

the entries in the line labeled '^2°^ regime obs" denote the proportion of observations for 

which ry,t - P Ta > Y. The entries on the lines labeled "p-value" refer to p-values for the test 

of the null of linearity against the alternative of two-regime threshold nonlinearity. These 

results will be discussed in more detail as follows. For comparison purposes, the results are 

presented from fitting the linear VECM model in Table 5.2.2. Notice in Table 5.2.2 that all 

the Engle-Granger test-statistics are greater (in absolute value) than the critical value 2.87 for 

500 observations at the 5% significance level, indicating the presence of cointegration 

between each pair of interest rates considered. 

The SupLM° test (with P = 1) and SupLM test (with P estimated) developed by 

Hansen and Seo (2002) were used to test the null of linear cointegration against the threshold 
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cointegration alternative, by calculating the p-values by both the ûxed regressor bootstrap 

and residual bootstrap methods described by Hansen and Seo (2002)^. 

The grid search begun with 100 grid points, then re-estimated the model using 300 

grid points for the threshold variables. The rationale was that there are 456 total 

observations; by excluding lags, and difference terms, there are 452 usable observations. The 

total number of the threshold candidates is approximately 300 after excluding the top and 

bottom 15% of the ordered threshold variables, and after taking into account the possible 

same values of the threshold variables. If one selects 100 grid points, then one out of three 

possible threshold candidates are evaluated. By selecting 300 grid points, approximately 

every possible threshold candidate is evaluated if the threshold variables are uniformly 

distributed in the 70% middle range of the selection. The search range of (3 is defined as the 

linear consistent estimate of P, estimated from the linear cointegration model pluses and 

minuses 6 times of the estimated standard error of p. Next selected were 300 evenly spaced 

data points in this search range as the possible candidates of p. After forming the grid points 

of threshold variable and the cointegrating variable, a two-dimensional grid search was 

conducted to find the values that maximize the likelihood function. The estimation 

procedures are described in Appendix B. Notice that searching too many grid points will 

increase computational burden and will make the model unrealistic. 

Table 5.2.1 also reports the p-values calculated from the fixed regressor bootstrap and 

the residual bootstrap methods. All p-values were computed with 300 grid points searching 

over the threshold variable and the cointegrating variable, with 1000 simulated replications. 

^ See Appendix B for more details on the Hansen-Seo estimation and test procedures. 
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5.23. Sensitivity testing 

Two robustness checks were conducted to examine the sensitivity of the results. 

First, the model was estimated with 300 grid points and 5000 simulated replications. The 

calculated p-values are also displayed in Table 5.2.1. Second, Tables 5.2.3 to 5.2.10 display 

the estimation results of all eight models with grid points equal to 300 and 100, respectively. 

The results are reasonably stable to the grid points (hat were selected. One should note that 

model selection criterion AIC selects the model with grid points equal 300 over the 

counterpart of grid points equal 100 for all models. Thus, in the following section, the 

discussion focuses on the results from the estimated model with 300 grid points. 

5.2.4. Other results 

The results from the threshold cointegration tests differ drastically depending upon 

whether Tsy or Ibb is used to measure Treasury rates. Linear cointegration is rejected at the 

10% level for all cases using Tsy, except for Tsy vs. Baa with two lags and (3 fixed at unity. 

Nevertheless, the p-values are relatively small (14% or 21%), depending on the method used 

to construct the p-value). On the other hand, the p-values for the test using the Ibb-Aaa and 

Ibb-Baa spreads are all relatively large. Interestingly, when lag = 2 is set, the evidence for 

threshold cointegration appears to weaken, with only one of the four significant at the 10% 

level. However, if P is estimated freely, the evidence for threshold cointegration is 

strengthened; with two of four significant at the 10% level in either lag specification. In 

general, the p-values estimated from the residual bootstrap method appear to be larger than 

the p-values estimated from the fixed regressor bootstrap method, with only three exceptions 

(Ibb vs. Baa with one lag and Ibb vs. Aaa for both lag specifications). 
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Next to be addressed are the coefficient estimates for the TVECM models for each of 

the four pairs of interest rates (Tsy-Aaa, Tsy-Baa, Ibb-Aaa, Ibb-Baa). The model is 

estimated by minimising the concentrated likelihood equation (5.2.7), as given by Hansen-

Seo (2002) (see Appendix B for details of the estimation procedure). 

First, a detailed discussion is provided regarding the estimated TVECMs for the 

relationship between the Treasury rate and the Baa bond index, one in which the 

cointegrating parameter (3 is estimated and the other in which P is fixed at unity. First, 

consider the model with P estimated. 

The estimated cointegration relationship is w, = , -1.108r^. The P estimate is 

approximately 10.8% greater than a unit coefficient. The estimated threshold is y = 0.351, 

which is expressed in terms of percent per year. Hence, the first regime occurs when 

^1.108%y(+0.351,i.e., when the Baa bond index is less than 0.351 percentage points 

above the Treasury rate (after appropriate adjustment through cointegrating relationship). 

Seventeen percent of the observations fall into this regime, which Hansen and Seo call the 

"extreme" regime, since less than half the observations Ml into this regime. The second 

regime is when r^, >1.108r^ , +0.351, where the Baa bond index is more than 0.351 

percentage points above the Treasury rate. Approximately 83% of the observations fall into 

this regime, which Hansen and Seo would call the "typical" regime. 

The estimated threshold VECM is given in equations (5.2.2) and (5.2.3): 
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0.04-0.09w,_, -0.54Arg„ ,_, + 0.92Ar^+U,,, w,_, <0.351, 

(0.02) (0.14) (0.16) (0.16) 

(5.2.2) 

0.03 - 0.04w,_, +0.22^ 

(0.02) (0.02) (0.11) 

+ 0.22Ar^,_, +0.22Ar^ + u„, w,_, >0.351, 

(0.09) 

and 

0.02-0.03w,_, -1.53Arg^+1.32Ar^ +U;,, w,_, <0.351, 

(0.05) (0.26) (0.40) (0.35) 

(5.2.3) 

-0.01 + 0.02w,_, -0.04ATg^,_, +0.39Ar^+ u^, w,_, >0.351. 

(0.03) (0.03) (0.16) (0.13) 

Notice that all the point estimates in the extreme regime (when w^ < 0.351) are larger (in 

absolute value) than the corresponding parameters in the typical regime. In fact, the 

coefficients in the equations for the typical regime are small enough to suggest that in this 

regime Ar^ , and Ar^ , are close to driftless random walks, or simple AR(1) models. 

Bicker-White standard errors are presented in parenthesis; however, these should be 

interpreted with caution, since there is no formal distribution theory for the parameter 

estimates and standard errors^. 

* There are occasions in econometric modeling when die assumption of constant error variance, or 
AomascedbsfKvfy, is unreasonable. For example, one might assume that error terms associated with one 
variable (Aaa or Baa) might have larger variances than those error terms associated with the other variable (Tsy 
or Ibb). With heteroscedasticity, biased and inconsistent estimation of the variances of the ordinary least-
squares parameter estimates causes statistical inference to be invalid. Halbert White has suggested a method for 
obtaining consistent estimates of variances and covariances of OLS estimates, which provides valid statistical 
tests for large sample. White's heteroscedasticity-consistent estimator (HCE) is based on the principle of 
maximum likelihood. With HCE estimation, the R^ for the regression will be the same, but all estimates of 
standard errors and related statistics will change because they are now consistent estimates. In particular, the 
variances will be larger than the variances associated with OLS estimators. However, HCE does not provide 
the most efficient parameter estimates. (For efficient estimation, one of the weighted least-squares estimation 
procedures must be used.) 
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Next reported are the parameter estimates of the model, when the cointegration 

parameter (3 is fixed at unity. The threshold estimate is 1.410 (percent per year). Thirty-six 

percent of the observations fall into the extreme regime and 64% fall into the typical regime. 

Here, the "extreme" regime occurs when rg„ , < r^ , +1.410, while the "typical" regime 

occurs when ?&*, > %y, +1.410. The estimated threshold VECM is given in equations 

(5.2.4) and (5.2.5): 

and 

AfTsy.t -

0.01 + 0.01w,_i -0.02ArB„ ,_, +0.54Ar^+ u„, w,_, <1.410, 

(0.02) (0.02) (0.09) (0.07) 

0.05-0.03w^, +0.13Ar^ ,_, +0.26Ar^+u,„ w,_i >1.410, 

(0.05) (0.03) (0.12) (0.10) 

— 0.03 + 0.06w,_, — 0.30Argg^,_, + 0.42Ar^+ U2,, w,_, ^1.410, 

(5.2.4) 

(0.03) (0.04) (0.17) (0.12) 

(5.2.5) 

-0.06 + 0.03w,_, -0.32Arggg,_, 4- 0.54Arr_+U2,, w,_, >1.410. 

(0.08) (0.04) (0.22) (0.15) 

The finding of previous two specifications is of great interest. Comparing equations 

(5.2.2) and (5.2.3) to the pair of (5.2.4) and (5.2.5), in the extreme regime equations, the 

signs of the error-correction coefficients switch from negative to positive: (-0.09, -0.03) to 

(0.01,0.06). As articulated by Campbell and Shiller (1991), and Campbell (1995), as well as 

the work by Hansen and Seo (2002), the coefficient of the error-correction term w,_,, in the 

threshold VECM, should be positive. The rationale behind this argument stems &om the 

term structure of interest rates. Since a large positive spread (r„_ , - r^ ,) implies the long 
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bond (rg„,) earns a higher rate than the expected interest rate, the long bond must be 

expected to depreciate in value. Hence, the long interest rate is expected to rise; at the same 

time, however, the short interest rate (r^ ,) is also expected to rise, since the long rate is a 

smoothed forecast of future short rates. 

Campbell and Shiller (1991) and Campbell (1995) found evidence that changes in the 

short rate are positively correlated with the spread, whereas changes in the long rate are 

negatively correlated with the spread. These authors called this finding a "puzzle", since it is 

against the prediction of the term structure theory. However, Hansen and Seo (2002) found 

support for the prediction of the term structure theory. In their estimation, the coefficients of 

the error-correction terms are either positive or not significantly different from zero, if 

negative. So, there appears to be no puzzle to Hansen and Seo. The current threshold 

cointegration approach, under the p-equals-unity case, supports the argument of Hansen and 

Seo (2002), since all of the coefficients of error-correction terms in the extreme regime are 

positive. However, in the case of estimated-P, both long and short rate error-correction 

coefficients are negative (although not too significant for the short rate equation), which is 

similar to the finding of Campbell and Shiller (1991) and Campbell (1995). 

Last reported is the conventional linear VECM as follows: 

(1) With the cointegrating vector estimated from the model, we obtain p = 1.185, so 

that w, = , -1.185r%y,. The error-correction representation is given in 

equations (5.2.6) and (5.2.7): 

(5.2.6) 
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- 0.01 + 0.04w,_, - 0.29Arg„+ 0.52Ar^,_, + u^. 

(0.02) (0.03) (0.18) (0.13) 
(5.2.7) 

(2) With the cointegration vector fixed at [1, -1]' the error correction representation is 

given in equations (5.2.8) and (5.2.9): 

Notice that the estimated models (5.2.6)-(5.2.7) and (5.2.8)-(5.2.9) are nearly the 

same. This appears to be the case because the error-correction term has little effect in any of 

the four equations. Consequently, the value specified for (3 does not affect the model's 

dynamics. 

One may compare the dynamics shown in equations (5.2.2)-(5.2.3) (threshold 

cointegration model) versus those in equations (5.2.6)-(5.2.7) (linear cointegration model) for 

the case of |3 is estimated from the data and equations (5.2.4)-(5.2.5) (threshold cointegration 

model) versus equations (5.2.8)-(5.2.9) (linear cointegration model) for (3 is fixed at unity. 

For the Arg^t equations (5.2.2) and (5.2.6), the signs of the coefficient estimates are 

in agreement for the constant, wu, and Arrsy.t-i terms. The coefficient estimate of Arga^t-i in 

equation (5.2.2) is negative (-0.54) (with standard error 0.16) under the extreme regime, 

while it is positive (0.22) (with a standard error 0.11) under the typical regime. In equation 

(5.2.6), the coefficient estimate of Arg^t-i is positive (0.11) (with a standard error 0.10). 

Hence, there exists a negative impact (with a coefficient estimate of -0.54) in the change of 

previous period's Baa rates on the change of current Baa rates—under the extreme regime of 

(5.2.8) 

(5.2.9) 
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the threshold cointegration model. Furthermore, given that the standard errors are 0.16 and 

0.11 in equation (5.2.2), the t-statistics are -3.375 and 2.000 for the Arg^t-i coefficients, 

respectively; while in equation (5.2.6), the t-statistic is 1.10 for the ArBaa,t-i coefficient. 

For the Arrsy.t equations (5.2.3) and (5.2.7), the signs of the coefficient estimates are 

in agreement with respect to the Arg^t-i, and Arrsy,t-i terms. The coefficient estimate of the 

constant term in equation (5.2.3) is positive (0.02) under the extreme regime, while it is 

negative (-0.01) under the typical regime (the t-statistics are 0.40 and -0.33, respectively.) In 

equation (5.2.7), the coefficient estimate of constant is negative (-0.01) (the t-statistic is -

0.50.) Next, the coefficient estimate of wn in equation (5.2.3) is negative (-0.03) under the 

extreme regime, while it is positive (0.02) under the typical regime (the t-statistics are -0.12 

and 0.67, respectively). In equation (5.2.7), the coefficient estimate of w*.i is positive (0.04) 

(the t-statistic is 1.33). 

For the Arg^t equations (5.2.4) and (5.2.8), the signs of coefficient estimates are in 

agreement with constant and Arr^t-i terms. The coefficient estimate of Wt_i in equation 

(5.2.4) is positive (0.01) (with a t-statistic of 0.50) under the extreme regime, while it is 

negative (-0.03) (with t-statistic of 1.00) under the typical regime. In equation (5.2.8), the 

coefficient estimate of w^ is negative (-0.03) (with a t-statistic of -3.00). Next, the 

coeff ic ient  es t imate  of  in  equat ion (5.2.4)  is  negat ive (-0.02)  (with a  t-s ta t is t ic  of-

0.22) under the extreme regime, while it is positive (0.13) (with t-statistic of 1.08) under the 

typical regime. In equation (5.2.8), the coefficient estimate of Ar^^t-i is positive (0.12) (with 

a t-statistic of 1.20). 
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For the Arrsy.t equations (5.2.5) and (5.2.9), the signs of coefficient estimates are in 

agreement with respect to the Arg^t-i, and Arrsy,t-i terms, which have the same pattern as the 

estimates of equations (5.2.3) and (5.2.7) (threshold cointegration model). The coefficient 

estimate of the constant term in equation (5.2.5) is negative under both regimes (with t-

statistics of -1.00 and -0.75, respectively.) In equation (5.2.9), the coefficient estimate of 

constant term is positive (0.01) (with t-statistic of 0.33.) Next, the coefficient estimate of ww 

in equation (5.2.5) is positive under both regimes (with t-statistics of 1.50 and 0.75, 

respectively). In equation (5.2.9), the coefficient estimate of w*.| is negative (-0.00) (with a 

statistic of -0.00). 

One may also examine the dynamic adjustments to unit shocks to equations (5.2.2) 

and (5.2.3) versus equations (5.2.6) and (5.2.7) when the cointegrating parameter is estimated 

from the model for TVECM and linear VECM of Baa and Tsy pair. The above estimates for 

equations (5.2.2) and (5.2.3) show that both Baa and Tsy adjust moderately to a unit shock 

when both rates fall into the second regime (the typical regime, where ww > 0.351). Within 

any month, the Tsy rate adjusts roughly 2% and the Baa rate adjusts -4% in response to a 

positive 1-unit deviation from the long-run equilibrium. When both rates fall into the first 

regime (the extreme regime, where Wt_i < 0.351), for one unit deviation from the long-run 

equilibrium, the corporate rates Baa adjust more strongly (-9%) than the Tsy rates (about -

3%). Thus, adjustment to the long-run equilibrium shows a strong tendency, when the Baa 

rates wander away from the cointegration relationship with one unit change in the regime 

where Wt_i 3 0.351. 

Within the regime of symmetric adjustment, equations (5.2.6) and (5.2.7) show that 

for both rates the adjustments to the long-run equilibrium are moderately slow. Overall, for a 
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l-unit gap away from long-run equilibrium, Tsy and Aaa adjust roughly 4% and -3%, 

respectively, regardless of the sign of the deviation from long-run equilibrium. 

When the cointegration parameter P is fixed at unity, equations (5.2.4) and (5.2.5) 

show that both Baa and Tsy adjust moderately to a unit change when they fall into the typical 

regime (ww > 1.410). Within any month, the Tsy rate adjusts roughly 3% and the Baa rate 

adjusts -3% in response to a positive l-unit deviation from the long-run equilibrium. Under 

the extreme regime (ww ^ 1.410), the Tsy rates adjust more strongly (about 6%) than the 

corporate rates Baa (1%). Thus, adjustment to the long-run equilibrium shows a strong 

tendency when the Tsy rates wander away from the cointegration relationship with one unit 

change in extreme regime. 

Within the regime of symmetric adjustment, these estimates (equations (5.2.8) and 

(5.2.9)) show that for both rates the adjustments to the long-run equilibrium are relatively 

slow. Overall, for a l-unit gap away from long-run equilibrium, Tsy and Aaa adjust roughly 

-0% and -3%, respectively, regardless of the sign of the deviation from long-run equilibrium. 

Two sets of threshold cointegration estimations are reported for each of the other 

three pairs of interest rates, one with the cointegration parameter p estimated and the other 

fixing p at unity. The lag length (2 vs. 1), for each case, was selected based on the AIC and 

BIC presented in Table 5.2.1. A couple of observations from Table 5.2.1 are worth noting at 

this point. First, whether the first regime or the second regime is the extreme regime depends 

heavily upon whether the Ibbotson index or Treasury rate is used. Second, in the IBB vs. 

Aaa case (P estimated from the model), with different lag specification, the number of data 

points in the first regime flips from one end to the other (15% vs. 79%). 
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For the pair of Tsy vs. Aaa, with the lag length equals to two and (3 is estimated from 

the model, the estimated TVECM is given in equations (5.2.10) and (5.2.11): 

0.06-0.17w,_, -1.20Ar^,_, +1.20Ar^-0.63Ar^,_; 

(0.06) (0.31) (0.40) (027) (0.49) 
+ 0.47Ar^ ,_2 + u„, < 0.203, 

(0.40) 

Ar. 
(5.2.10) 

and 

^T».t = 

0 04 -  0.06w,_,  +0.21Ar^,+ 0.29Ar^,_,  +  0.01Ar^,_2 

(0.03) (0.03) (0.12) (0.08) (0.12) 
-0 .24Ar^+ u„,  w,_,  >0.203,  

(0.10) 

— 0.00+ 0.17w,_, -1.10Ar^,_, +1.09Ar^ ,_| -0.57Ar^, 

(0.08) (0.40) (0.55) (0.41) (0.75) 
+ 0 .29Ar T s y ,+  u 2 t ,  

(0.60) 

w,_, ^ 0.203, 

(5.2.11) 

0.01-0.01w,_, +0.12Ar^,_, + 0.38Ar^,_, +0.26Ar^,_; 

(0.03)(0.04) (0.17) (0.11) (0.17) 
- 0 42Ar^ + u z,, w> 0.203. 

(0.13) 

For the pair of Tsy vs. Aaa, with the lag length equals to two, the estimated TVECM 

with fixed cointegrating vector is given in equations (5.2.12) and (5.2.13): 
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Ar 

0.08-0.19w,_. -1.08Ar^,_, +1.10Ar^,_, -0.54Ar^,_, 

(0.07) (0.34) (0.37) (0.26) (0.49) 

+ 0.3 8Afpgy ,_2 + w,_, 3 0.280, 

0.04 - 0.06w,_, +0.22Ar^,_, +0.28Ar^,_, + 0.01Ar^ 

(0.03) (0.03) (0.12) (0.08) (0.12) 

— 0.24Ar ^ g y  , _ 2  + u„,  

(0.10) 

w,_, > 0.280, 

(5.2.12) 

and 

^Tv.t = 

-0.01 + 0.21w,_, -1.04Ar^,_i + 1.04Ar^,_, -0.47Ar^,_, 

(0.10) (0.46) (0.50) (0.39) (0.75) 

+ 0.19Ar^,_;+U2„ w,_, 3 0.280, 

(0.55) 

0.00 - 0.00w,_i +0.13Ar^,_, + 0.37Ar^+ 0.24Ar^^ 

(0.04) (0.05) (0.17) (0.11) (0.17) 

(5.2.13) 

-0.41Arny.,_z +"21, 

(0.13) 

w,_; > 0.280. 

For the pair of Ibb vs. Aaa, with lag length equals to one and P estimated from the 

model, the estimated TVECM is given in equations (5.2.14) and (5.2.15): 

Aaa, I 

- 0.20 + 0.72w,_, +0.13Ar^ ,_, +0.84Ar^ ,_, +u„,w,_, <0.350, 

(0.09) (0.31) (0.24) (0.19) 

0.05-0.07w,_, -0.02Ar^_ ,_, + 0.46A%,,_, +u„, w*_, >0.350, 

(5.2.14) 

(0.03) (0.04) (0.06) (0.05) 

and 
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Ar, Ibb.t 

0.37+1.35w,_, + 0.42Ai\*+ 0.27Ar^+ u^, w,_, <0.350, 

.16) (0.53) (0.51) (0.34) 

0.04+0.05w,_, -0.07 Ar^..+ 0.13Ar^+ u„, w,_, >0.350 

(5.2.15) 

Aaa,t-1 Ibb.t-1 ^ "l-l 

(0.05) (0.07) (0.11) (0.09) 

For the pair of Ibb vs. Aaa, with lag length equals to one, the estimated TVECM with 

fixed cointegrating vector is given in equations (5.2.16) and (5.2.17): 

Ar*»,. = 

0.09-0.23w*_, + 0.05Ar^+0.43A%, ,_] +u„, w,_, <0.620, 

(0.03) (0.08) (0.08) (0.06) 

0.11-0.11w,_, -0.09Ar^,_i + 0.53Arg*+ u„, w,_, > 0.620, 

(0.07) (0.08) (0.09) 

(5.2.16) 

and 

Ar, Ibb, I 

0.04 - 0.15w,_i + 0.09Ar^. ,_i + 0.04Ar^+ u^, w,_, < 0.620, 

(0.06) (0.15) (0.14) (0.10) 

(5.2.17) 

- 0.02 + 0.07w,_i - 0.18Ar^,_, + 0.21Arg* ,_, + u,,, w,_, > 0.620. 

(0.12) (0.12) (0.15) (0.13) 

For the pair of Ibb vs. Baa, with lag length equals to one and (3 estimated from the 

model, the estimated TVECM is given in equations (5.2.18) and (5.2.19): 

-0.00-0.00w,_, + 0.19ATB„,_, + 0.46Ar^+ u„, w,_, <-0.529, 

Baa.t 

(0.02) (0.01) (0.05) (0.04) 

(5.2.18) 

- 0.07 — 0.19w,_| + 0.2 lAr^—i 

(0.02) (0.05) (0.12) (0.08) 

wu-,+u„,  w,_,  >  -0.529,  

and 
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Ar, n*,t 

0.09 + 0.06w,_, -0.08Ar^,_, +0.24Arg*+ u^, w,_, <-0.529, 

(0.04) (0.03) (0.12) (0.09) 

(5.2.19) 

0.02-0.09w,_,  -0 .18Ar^-0.44Ar^+ u^, ,  w,_,  >-0.529.  Mbb,t-I ^ "21» " l-l 

(0.03) (0.09) (0.24) (0.15) 

For the pair of Ibb vs. Baa, with lag length equals to one, the estimated TVECM with 

fixed cointegrating vector is given in equations (5.2.20) and (5.2.21): 

0.01-0.00w,_, + 0.25Ar^,_, + 0.45A%,,_, + u„, w,_, <1.920, 

(0.02) (0.02) (0.06) (0.05) 

0.02 —0.03w,_,  +0.10Arg^+ 0.34Ar^+u^, ,  w,_,  >1.920,  

(0.15) (0.06) (0.09) (0.06) 

Ar. (5.2.20) 

and 

-0.01 + 0.00w,_, +0.046^+ 0.17Ar^,,_, + u^, w,_, <1.920, 

(0.05) (0.04) (0.10) (0.08) 

- 0.03 +0.0lw,_i -0.31Arg^ ,_, + 0.08A%,+ u%,, w,_, >1.920. 

).12) (0.23) (0.14) 

(5.2.21) 

5.2.5. Conclusions 

The Hansen-Seo two-regime threshold vector error correction model was employed to 

estimate and test threshold behavior of four interest rates pairs in this section. The following 

conclusions were made: 

* From the calculated p-values, Tsy vs. Aaa pair has strong threshold cointegration 

relationship with different lag length specifications, regardless of whether 

cointegrating parameter |3 is estimated from the model or is fixed at unity. For the 
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pair Tsy vs. Baa, the p-values also show strong tendency that these two rates are 

threshold cointegrated with both lag specifications, when the cointegrating parameter 

P is estimated from the model. However, when P equals to unity, the calculated p-

values deteriorate when we extend the lag length from one to two. For other two 

pairs of interest rates (Ibb vs. Aaa and Ibb vs. Baa), relatively high p-values were 

obtained under both lag length specifications, regardless of whether p is estimated or 

fixed at unity. 

When the cointegrating parameter p is estimated from the model, for both lag length 

specifications, six out of eight p estimates are greater than unity while two are less 

than unity. This finding is in contrast to the conventional assumption that the 

corporate bond rate will move one unit when the Treasury note is shocked by a unit 

shock. In particular, the estimated p are 1.385 and 1.377, for Ibb vs. Baa pair; while 

the estimated P are 0.981 and 0.948 for Ibb vs. Aaa pair, for 1-lag and 2-lag length. 

Whether the first regime or the second regime is the typical regime, depends on which 

interest pairs are of interest and how we select the lag length. For example, for the 

Ibb vs. Aaa pair when P is estimated from the model, under different lag length 

specification, the first regime will switch from typical regime to extreme regime. 

Two sensitivity tests were conducted in this section. One test was to extend the grid 

points search from 100 grid points to 300 grid points in a two-dimensional setting. 

The second test was to increase the bootstrap simulation replications from 1000 to 

5000. Some gains were observed from changing the grid points from 100 to 300, 

since the AIC criterion will improve under a 300 points environment. A mixed 
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picture was obtained when increasing the simulation replications from 1000 to 5000. 

In some cases the p-values decreased, but in other cases, the p-values increased. 

However, the changes of the p-values were relatively moderate. 
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Table 5.2.1. Results of the threshold cointegration 

(A). /?=! 

Lag = 1 Tsy vs. Aaa Tsy vs. Baa Ibb vs. Aaa Ibb vs. Baa 

AIC -1634 -1594 -1454 -1463 

BIC -1623 -1584 -1442 -1453 

1st regime obs* 20 36 65 74 

2nd regime obs* 80 64 35 26 

p-value** 0.013 0.047 0.502 0.990 

p-value*** 0.009 0.054 0.519 0.988 

p-value**** 0.017 0.083 0.517 0.961 

p-value***** 0.020 0.069 0.511 0.974 

Gamma hat 0.290 1.410 0.620 1.920 

Lag = 2 Tsy vs. Aaa Tsy vs. Baa Ibb vs. Aaa Ibb vs. Baa 

AIC -1644 -1586 -1445 -1456 

BIC -1628 -1570 -1430 -1440 

1st regime obs* 20 36 65 77 

2nd regime obs* 80 64 35 23 

p-value** 0.078 0.138 0.470 0.633 

p-value*** 0.070 0.160 0.439 0.612 

p-value**** 0.099 0.211 0.475 0.639 

p-value***** 0.101 0.208 0.487 0.609 

Gamma hat 0.280 1.410 0.620 2.000 

In % term. 
Fixed regressor bootstrap with 1000 simulation replications. 
Fixed regressor bootstrap with 5000 simulation replications. 
Residual bootstrap with 1000 simulation replications. 
Residual bootstrap with 5000 simulation replications. 

Note: 
* 
** 

*** 

**** 

***** 
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Table 5.2.1. (continued) 

(B). /) is estimated 6om the model 

Lag=l  Tsy vs. Aaa Tsy vs. Baa Ibb vs. Aaa Ibb vs. Baa 

AIC -1637 -1608 -1456 -1481 

BIC -1627 -1597 -1445 -1471 

1 st regime obs* 15 17 15 84 

2nd regime obs* 85 83 85 16 

p-value** 0.037 0.053 0.987 0.417 

p-value*** 0.039 0.054 0.987 0.422 

p-value***** 0.051 0.061 0.956 0.380 

p-value***** 0.044 0.064 0.954 0.380 

Gamma hat 0.035 0.351 0.350 -0.529 

Beta hat 1.039 1.108 0.981 1.385 

Lag = 2 Tsy vs. Aaa 

-1645 

Tsy vs. Baa Ibb vs. Aaa Ibb vs. Baa 

AIC 

Tsy vs. Aaa 

-1645 -1603 -1450 -147 

BIC -1629 -1587 -1434 -1450 

1st regime obs* 16 16 79 85 

2nd regime obs* 84 84 21 15 

p-value** 0.059 0.038 0.953 0.268 

p-value*** 0.053 0.037 0.963 0.274 

p-value**** 0.069 0.049 0.910 0.277 

p-value"**** 0.075 0.056 0.903 0.283 

Gamma hat 0.203 0.313 1210 -0.465 

Beta hat 1.007 1.112 0.948 1.377 

Note: 
* In % term. 
* * Fixed regressor bootstrap with 1000 simulation replications. 
*** Fixed regressor bootstrap with 5000 simulation replications. 
**** Residual bootstrap with 1000 simulation replications. 
***** Residual bootstrap with 5000 simulation replications. 
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Table 5.2.2. Results of the linear cointegration 

(A). /?=! 

Lag= 1 Tsy vs. Aaa Tsy vs. Baa Ibb vs. Aaa Ibb vs. Baa 

AIC 949 1210 1496 1627 

BIC 957 1218 1504 1635 

test-statistic -4.214 -3.694 -6.512 -4.050 

Lag = 2 

AIC 937 1191 1493 1628 

BIC 950 1203 1505 1640 

test-statistic -3.465 -2.960 -5.615 -3.747 

* Test-statistic is the t-statistic of p in the Engle-Granger cointegration test: 
form the regression: r^, = P„ + p,r„, + p,, then form the autoregression of the residuals 

n 

6om the 6rst step: Ajl,_, = pp,_, + ^PiP,_4 +s,. Pi = 1 is restricted for the P = 1 panel. 
i=I  

** Critical values for 90%, 95% and 99% confidence intervals of the Augmented Dickey-
Fuller Test: 

Sample size 1% 5% 10% 

100 -3.51 -2.89 -2.58 

250 -3.46 -2.88 -2.57 

500 -3.44 -2.87 -2.57 
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Table 5.2.2. (continued) 

(B). /? is estimated 6om the model 

Tsy vs. Aaa Tsy vs. Baa Ibb vs. Aaa Ibb vs. Baa 

AIC 952 1342 1507 1723 

BIC 960 1351 1515 1732 

test-statistic -4.225 -5.200 -6.692 -5.814 

Beta hat 1.002 1.135 1.018 1.151 

Lag = 2 

AIC 940 1324 1504 1725 

BIC 952 1336 1617 1737 

test-statistic -3.474 -4.081 -5.789 -5.419 

Beta hat 1.002 1.135 1.018 1.151 

* Test-statistic is the t-statistic of p in the Engle-Granger cointegration test: 
form the regression: r,, , = P„ + P,r,, + , then form the autoregression of the residuals 

n 
from the first step: PiP^ + g,. Pi = 1 is restricted for the p = 1 panel. 

i=l 

** Critical values for 90%, 95% and 99% confidence intervals of the Augmented Dickey-
Fuller Test: 

Sample size 1% 5% 10% 

100 -3.51 -2.89 -2.58 

250 -3.46 -2.88 -2.57 

500 -3.44 -2.87 -2.57 
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Table 523. Comparison of different grid search, Tsy vs. Aaa, P = 1 

Grid points—300 Grid pointylOO 

1st regime long rate eq est coeff. std error est. coeff. std error 
error-correction term (0.1880) 0.3367 (0.1880) 0.3367 
constant tenn 0.0798 0.0737 0.0798 0.0737 
long rate difference lagged one term (1.0823) 0.3659 (1.0823) 0.3659 
short rate difference lagged one term 1.1029 0.2603 1.1029 0.2603 
long rate difference lagged two term (0.5433) 0.4850 (0.5433) 0.4850 
short rate difference lagged two term 0.3777 0.3614 0.3777 0.3614 

1st regime short rate eq 
error-correction term 0.2122 0.4586 0.2122 0.4586 
constant term (0.0122) 0.1019 (0.0122) 0.1019 
long rate difference lagged one tenn (1.0381) 0.5023 (1.0381) 0.5023 
short rate difference lagged one term 1.0371 0.3894 1.0371 0.3894 
long rate difference lagged two term (0.4708) 0.7500 (0.4708) 0.7500 
short rate difference lagged two term 0.1865 0.5490 0.1865 0.5490 

2nd regime long rate eq 
error-correction term (0.0570) 0.0340 (0.0570) 0.0340 
constant term 0.0417 0.0300 0.0417 0.0300 
long rate difference lagged one term 0.2159 0.1180 0.2159 0.1180 
short rate difference lagged one tenn 0.2809 0.0762 0.2809 0.0762 
long rate difference lagged two term 0.0080 0.1236 0.0080 0.1236 
short rate difference lagged two term (0.2371) 0.0972 (02371) 0.0972 

2nd regime short rate eq 
error-correction term (0.0018) 0.0467 (0.0018) 0.0467 
constant term 0.0042 0.0412 0.0042 0.0412 
long rate difference lagged one term 0.1310 0.1736 0.1310 0.1736 
short rate difference lagged one term 0.3691 0.1143 0.3691 0.1143 
long rate difference lagged two tenn 0.2424 0.1692 02424 0.1692 
short rate difference lagged two term (0.4084) 0.1262 (0.4084) 0.1262 

AIC -1644 -1644 
BIC -1628 -1628 
1st regime % of total obs 20% 20% 
2nd regime % of total obs 80% 80% 
p-value: Fixed regressor bootstrap 0.078 0.094 
p-value: Residual bootstrap 0.099 0.141 
Gamma hat 0280 0.280 
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Table 5.2.4. Comparison of different grid search, Tsy vs. Aaa, P is estimated 

Grid points—300 Grid pointylOO 

1st regime long rate eq est coeff. std error est. coeff. std error 
error-correction term (0.1654) 0.3117 (0.1679) 0.3033 
constant term 0.0635 0.0590 0.0747 0.0633 
long rate différence lagged one term (1.2028) 0.3961 (1.1011) 0.3821 
short rate difference lagged one term 1.1963 0.2709 1.1185 0.2541 
long rate difference lagged two term (0.6276) 0.4899 (0.5758) 0.4653 
short rate difference lagged two term 0.4739 0.4011 0.4054 0.3621 

1st regime short rate eq 
error-correction term 0.1674 0.4048 0.1981 0.3907 
constant term (0.0016) 0.0825 (0.0061) 0.0856 
long rate difference lagged one term (1.0973) 0.5505 (0.9911) 0.5189 
short rate difference lagged one term 1.0892 0.4058 1.0060 0.3709 
long rate difference lagged two term (0.5661) 0.7513 (0.5225) 0.7157 
short rate difference lagged two term 0.2873 0.6025 02200 0.5437 

2nd regime long rate eq 
error-correction term (0.0565) 0.0310 (0.0592) 0.0333 
constant term 0.0388 0.0252 0.0430 0.0287 
long rate difference lagged one term 0.2083 0.1169 0.2079 0.1177 
short rate difference lagged one term 0.2878 0.0757 0.2873 0.0764 
long rate difference lagged two term 0.0121 0.1238 0.0151 0.1245 
short rate difference lagged two term (0.2380) 0.0969 (0.2401) 0.0981 

2nd regime short rate eq 
error-correction term (0.0115) 0.0429 (0.0088) 0.0462 
constant term 0.0139 0.0349 0.0113 0.0398 
long rate difference lagged one term 0.1186 0.1728 0.1123 0.1736 
short rate difference lagged one term 0.3785 0.1140 0.3827 0.1149 
long rate difference lagged two term 0.2553 0.1696 02575 0.1705 
short rate difference lagged two term (0.4164) 0.1258 (0.4157) 0.1273 

AIC -1645 -1645 
BIC -1629 -1629 
1st regime % of total obs 16% 19% 
2nd regime % of total obs 84% 81% 
p-value: Fiied regressor bootstrap 0.059 0.041 
p-valne: Residual bootstrap 0.069 0.058 
Gamma hat 0.203 0.259 
Beta hat 1.007 1.002 
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Table 5.2.5. Comparison of different grid search, Tsy vs. Baa, (3 = 1 

Grid points—300 Grid points=100 

1st regime long rate eq est. coeff. std error est. coeff. std error 
error-correction term 0.0078 0.0239 0.0078 0.0239 
constant term 0.0118 0.0221 0.0118 0.0221 
long rate difference lagged one term (0.0183) 0.0850 (0.0183) 0.0850 
short rate difference lagged one term 0.5366 0.0701 0.5366 0.0701 

1st regime short rate eq 
error-correction term 0.0561 0.0378 0.0561 0.0378 
constant term (0.0309) 0.0346 (0.0309) 0.0346 
long rate difference lagged one term (0.3006) 0.1657 (0.3006) 0.1657 
short rate difference lagged one term 0.4207 0.1157 0.4207 0.1157 

2nd regime long rate eq 
error-correction term (0.0306) 0.0261 (0.0306) 0.0261 
constant term 0.0500 0.0523 0.0500 0.0523 
long rate difference lagged one term 0.1342 0.1218 0.1342 0.1218 
short rate difference lagged one term 0.2557 0.0983 0.2557 0.0983 

2nd regime short rate eq 
error-correction term 0.0280 0.0425 0.0280 0.0425 
constant term (0.0638) 0.0825 (0.0638) 0.0825 
long rate difference lagged one term (0.3220) 0.2207 (0.3220) 02207 
short rate difference lagged one term 0.5355 0.1522 0.5355 0.1522 

AIC -1594 -1594 
BIC -1584 -1584 
1st regime % of total obs 36% 36% 
2nd regime % of total obs 64% 64% 
p-value: Fixed regressor bootstrap 0.047 0.047 
p-value: Residual bootstrap 0.083 0.070 
Gamma hat 1.410 1.410 
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Table 5.2.6. Comparison of different grid search, Tsy vs. Baa, P is estimated 

Grid points-300 Grid points-100 

1st regime long rate eq est. coeff. std error est. coeff. std error 
error-correction term (0.0918) 0.1370 (0.1197) 0.0904 
constant term 0.0394 0.0240 0.0570 0.0256 
long rate difference lagged one term (0.5371) 0.1639 (0.4445) 0.1458 
short rate différence lagged one term 0.9204 0.1570 0.8431 0.1312 

1st regime short rate eq 
error-correction term (0.0285) 0.2588 (0.1707) 0.1866 
constant term 0.0230 0.0469 0.0622 0.0511 
long rate difference lagged one term (1.5300) 0.4002 (1.3135) 0.3608 
short rate difference lagged one term 1.3159 0.3499 1.1368 0.2946 

2nd regime long rate eq 
error-correction term (0.0351) 0.0190 (0.0354) 0.0198 
constant term 0.0344 0.0206 0.0384 0.0235 
long rate difference lagged one term 0.2151 0.1051 0.2248 0.1088 
short rate difference lagged one term 0.2160 0.0890 0.2097 0.0912 

2nd regime short rate eq 
error-correction term 0.0177 0.0299 0.0126 0.0314 
constant term (0.0059) 0.0309 (0.0002) 0.0356 
long rate difference lagged one term (0.0422) 0.1621 (0.0355) 0.1676 
short rate difference lagged one term 0.3889 0.1275 0.3833 0.1304 

AIC -1608 -1606 
BIC -1597 -1596 
1st regime % of total obs 17% 20% 
2nd regime % of total obs 83% 80% 
p-value: Fixed regressor bootstrap 0.053 0.060 
p-value: Residual bootstrap 0.061 0.067 
Gamma hat 0.351 0.529 
Beta hat 1.108 1.095 
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Table 5.2.7. Comparison of different grid search, Ibb vs. Aaa, P = 1 

Grid points—300 Grid points-100 

1st regime long rate eq est. coeff. std error est. coeff. std error 
error-correction term (0.2346) 0.0816 (0.2325) 0.0808 
constant term 0.0928 0.0295 0.0923 0.0293 
long rate difference lagged one term 0.0529 0.0776 0.0547 0.0771 
short rate difference lagged one term 0.4265 0.0639 0.4253 0.0638 

1st regime short rate eq 
error-correction term (0.1463) 0.1468 (0.1506) 0.1458 
constant term 0.0406 0.0564 0.0416 0.0562 
long rate difference lagged one term 0.0946 0.1383 0.0909 0.1378 
short rate difference lagged one term 0.0383 0.0989 0.0409 0.0988 

2nd regime long rate eq 
error-correction term (0.1144) 0.0755 (0.1141) 0.0763 
constant term 0.1091 0.0738 0.1087 0.0747 
long rate difference lagged one term (0.0914) 0.0904 (0.0916) 0.0907 
short rate difference lagged one term 0.5278 0.0706 0.5279 0.0706 

2nd regime short rate eq 
error-correction term 0.0692 0.1206 0.0641 0.1218 
constant term (0.0210) 0.1189 (0.0152) 0.1204 
long rate difference lagged one term (0.1799) 0.1495 (0.1767) 0.1502 
short rate difference lagged one term 0.2091 0.1274 02070 0.1273 

AIC -1454 -1453 
BIC -1443 -1443 
1st regime % of total obs 65% 66% 
2nd regime % of total obs 35% 34% 
p-value: Fixed regressor bootstrap 0.502 0.541 
p-value: Residual bootstrap 0.517 0.580 
Gamma hat 0.620 0.630 



www.manaraa.com

99 

Table 5.2.8. Comparison of different grid search, Ibb vs. Aaa, P is estimated 

Grid points—300 Grid points—100 

1st regime long rate eq est. coeff. std error est. coeff. std error 
error-correction term 0.7218 0.3076 0.7298 0.3040 
constant term (0.1981) 0.0903 (0.2057) 0.0911 
long rate difference lagged one term 0.1289 0.2429 0.1249 0.2406 
short rate difference lagged one term 0.8355 0.1902 0.8317 0.1887 

1st regime short rate eq 
error-correction term 1.3466 0.5275 1.3288 0.5171 
constant term (0.3739) 0.1597 (0.3827) 0.1595 
long rate difference lagged one term 0.4212 0.5144 0.4103 0.5160 
short rate difference lagged one term 0.2650 0.3398 0.2642 0.3379 

2nd regime long rate eq 
error-correction term (0.0740) 0.0389 (0.0750) 0.0392 
constant term 0.0527 0.0267 0.0544 0.0274 
long rate difference lagged one term (0.0243) 0.0637 (0.0242) 0.0638 
short rate difference lagged one term 0.4591 0.0531 0.4585 0.0533 

2nd regime short rate eq 
error-correction term 0.0524 0.0660 0.0487 0.0665 
constant term (0.0410) 0.0463 (0.0382) 0.0473 
long rate difference lagged one term (0.0659) 0.1068 (0.0656) 0.1068 
short rate difference lagged one term 0.1330 0.0886 0.1307 0.0888 

AIC -1456 -1456 
BIC -1445 -1445 
1st regime % of total obs 15% 15% 
2nd regime % of total obs 85% 85% 
p-value: Fixed regressor bootstrap 0.987 0.980 
p-value: Residual bootstrap 0.956 0.944 
Gamma hat 0.350 0.362 
Beta hat 0.981 0.980 
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Table 5.2.9. Comparison of different grid search, Ibb vs. Baa, P = 1 

Grid points=300 Grid points=100 

1st regime long rate eq est coeff. std error est. coeff. std error 
error-correction term (0.0006) 0.0193 0.0028 0.0178 
constant term 0.0103 0.0216 0.0079 0.0206 
long rate difference lagged one term 0.2497 0.0557 0.2563 0.0526 
short rate difference lagged one term 0.4473 0.0493 0.4234 0.0457 

1st regime short rate eq 
error-correction term 0.0036 0.0432 0.0350 0.0438 
constant term (0.0058) 0.0476 (0.0376) 0.0487 
long rate difference lagged one term 0.0356 0.0999 0.0526 0.0957 
short rate difference lagged one term 0.1700 0.0768 0.1294 0.0750 

2nd regime long rate eq 
error-correction term (0.0263) 0.0620 (0.0013) 0.0711 
constant term 0.0191 0.1488 (0.0488) 0.1750 
long rate difference lagged one term 0.1022 0.0899 0.1036 0.0926 
short rate différence lagged one term 0.3351 0.0621 0.3515 0.0667 

2nd regime short rate eq 
error-correction term 0.0050 0.1226 0.0804 0.1324 
constant term (0.0325) 02939 (0.2404) 0.3210 
long rate difference lagged one term (0.3118) 0.2327 (0.3326) 0.2442 
short rate difference lagged one term 0.0817 0.1361 0.1297 0.1419 

AIC -1463 -1463 
BIC -1453 -1452 
1st regime % of total obs 74% 78% 
2nd regime % of total obs 26% 22% 
p-value: Fixed regressor bootstrap 0.990 0.983 
p-value: Residual bootstrap 0.961 0.964 
Gamma hat 1.920 2.020 
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Table 5.2.10. Comparison of different grid search, Ibb vs. Baa, (3 is estimated 

Grid points=300 Grid points=100 

1st regime king rate eq est. coeff. std error est. coeff. std error 
error-correction term (0.0009) 0.0119 (0.0022) 0.0122 
constant term (0.0013) 0.0169 (0.0045) 0.0185 
long rate difference lagged one term 0.1943 0.0536 0.1863 0.0540 
short rate difference lagged one term 0.4582 0.0350 0.4625 0.0361 

1st regime short rate eq 
error-correction term 0.0620 0.0314 0.0671 0.0321 
constant term 0.0898 0.0426 0.1069 0.0466 
long rate difference lagged one term (0.0799) 0.1197 (0.0664) 0.1214 
short rate difference lagged one term 0.2385 0.0857 02185 0.0878 

2nd regime long rate eq 
error-correction term (0.1867) 0.0512 (0.1393) 0.0579 
constant term (0.0738) 0.0209 (0.0676) 0.0273 
long rate difference lagged one term 0.2097 0.1150 0.2238 0.1233 
short rate difference lagged one term (0.0349) 0.0778 0.0705 0.1172 

2nd regime short rate eq 
error-correction term (0.0890) 0.0856 0.0346 0.1070 
constant term (0.0240) 0.0320 0.0089 0.0481 
long rate difference lagged one term (0.1794) 02448 (02700) 02429 
short rate difference lagged one term (0.4361) 0.1524 (0.1595) 0.2370 

AIC -1481 -1479 
BIC -1471 -1468 
1st regime % of total obs 84% 81% 
2nd regime % of total obs 16% 19% 
p-value: Fixed regressor bootstrap 0.417 0.359 
p-value: Residual bootstrap 0.380 0.327 
Gamma hat -0.529 -0.645 
Beta hat 1.385 1.393 
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5.3. Results from the Enders-Siklos Threshold Cointegration Model 

53.1. Introduction 

The null of a linear unit root process against the alternative of the M-C TAR models 

for the various interest rate spreads was rejected in the data description section. This 

rejection provides strong evidence against linearity. According to the alternative hypothesis, 

the spreads are stationary and therefore the interest rate pairs are cointegrated with 

cointegrating vector [1,-1]. However, the alternative hypothesis of the spreads analysis 

imposes a very strong restriction on the values of cointegrating vector, i.e., that it is exactly 

equal to [1, -1]. It would be interesting to conduct a cointegrating test that does not restrict 

the cointegrating vector to be [1, -1]. The Enders-Siklos methodology relaxes the restriction 

on the values of cointegrating vector by estimating a long-run equilibrium relationship of 

interest rate pairs. Tables 5.3.1 to 5.3.4 report the test results for the Enders-Siklos 

momentum-consistent threshold autoregressive (M-C TAR) cointegration test*. 

In addition to reporting the results for the M-C TAR with consistent adjusted 

threshold, the results were also reported for the conventional Engle-Granger symmetric 

cointegration test (Engle-Granger), the Enders-Siklos test for threshold autoregression with 

the threshold equal to zero (TAR), the Enders-Siklos test for threshold autoregression with 

estimated threshold (C-TAR), and the Enders-Siklos test for momentum threshold 

autoregression with the threshold equal to zero (M-TAR). 

* The M-C TAR unit root tests introduced previously focused on whether the spreads of interest rate pairs have 
unit roots or are stationary. That is, they test the null that ihe interest rate pair are not cointegrated against the 
alternative that they are cointegrated with cointegrating vector [1, -1]. The testing for cointegration is without 
restricting the cointegrating vectors, a priori 
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TAR and M-TAR are two nonlinear models assuming the threshold parameter is zero, 

so that the cointegrating vector coincides with the linear attractor. However, in general, the 

value of threshold parameter is unknown and needs to be estimated with other variables, e.g., 

pi and p2. Referring to the estimation procedures of the methodology section, if the null 

hypothesis (pi = pz = 0) of nonstationary is rejected then it is possible to test for symmetric 

versus asymmetric adjustment (i.e. pi = pz). In other words, if the null is rejected, so that the 

cointegrating residual sequence has an attractor then we can perform a standard F-test for 

symmetric adjustment Tong (1983) demonstrated that if the adjustment process is 

asymmetric then the sample mean (i.e., under the assumption of zero threshold) is a biased 

estimate of the attractor. To rectify this bias, Chan (1993) showed that selecting a threshold 

candidate (from the cointegrating residual sequence) to minimize the sum of squared errors 

from the fitted model yields a super-consistent estimate of the threshold. 

The reasons to compare these five models are: (1) one may compare the linear versus 

nonlinear adjustment; and (2) if there is no a prion information about the true threshold 

value then one may estimate the threshold through Chan's (1993) method instead of 

assuming the threshold is set at zero. If a cointegration relationship exists between an 

interest rate pair then the next question would be interesting to ask: Is the adjustment process 

to the long-term equilibrium symmetric or asymmetric? In other words, is the adjustment 

process state-dependent, displaying threshold behavior? From the methodology section, it is 

recalled that the TAR model can capture the "deep" cyclical process documented by Sichel 

(1993), while the M-TAR model can detect the "sharp" movements documented in DeLong 

and Summer (1986) and Sichel (1993). 
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53.2. Discussion 

The test results for the equality of pi and % (Tables 5.3.1 to 5.3.4) show that 

asymmetric adjustment holds for three out of four cases at the 5% significance level under 

the M-C TAR model. The exception is the Baa-Ibb pair, which does, however, display 

significant asymmetry under the TAR model with a consistent estimator of the threshold (C-

TAR). For example, consider the pair for Aaa versus Tsy. Table 5.3.2 shows that 

asymmetric adjustment is most evident for the M-C TAR with consistent adjusted threshold. 

Specifically, the p-value for the test of equality of pi and p% for the M-C TAR model (0.008) 

is much smaller than the p-values for the zero threshold TAR (0.609), M-TAR (0.097), and 

C-TAR (0.021) tests. In addition, note that the AIC and BIC model selection criteria indicate 

that the M-C TAR performs better than the linear cointegration model fit as part of the Engle-

Granger test. 

Overall, the following three conclusions can be made: 

First, as shown in Tables 5.3.1 to 5.3.4, at the 5% significance level, all tests reject 

the symmetry null in favor of the M-C TAR (Aaa vs. Ibb, Aaa vs. Tsy, and Baa vs. Tsy) and 

C-TAR models (Baa vs. Ibb and Aaa vs. Tsy). 

Second, the results can be compared between the M-C TAR and the M-TAR with 

threshold set to zero. The M-C TAR provides much stronger evidence of asymmetric 

behavior than the M-TAR with zero threshold. Consider the case of Aaa vs. Tsy (Table 

5.3.2). The F-test (p% = p%) statistic is 7.004 with a significance level of0.008 under the M-C 

TAR model, but it is only 2.773 with a 0.097 significance level under the M-TAR. Hence, at 

the 10% significance level, both models suggest the existence of a cointegration relationship 

(«(» = 9.618, and 7.445, respectively). However, at the 5% level, symmetry is rejected against 
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the M-C TAR, but it is not rejected against the M-TAR with zero threshold. Thus, the 

asymmetric adjustment evidence is greatly enhanced under the M-C TAR with adjusted 

threshold regime. One may draw a similar conclusion when comparing the C-TAR model 

versus the TAR model for any of the other three interest rate pairs. 

Third, the AIC and BIC model selection criteria can be the basis of further 

conclusions. Note, in contrast to the R-square measure, the AIC and BIC model selection 

criteria incorporate penalties for additional parameters. Thus, although the M-C TAR model 

nests the M-TAR and linear cointegration models, the AIC and BIC should be smallest for 

the M-C TAR model, only if the additional parameters substantially improve the model's St. 

Consider, for example, the Aaa vs. Ibb case in Table 5.3.1. The AIC of the M-C TAR model 

is 1504, which is slightly better than the AIC of the linear cointegration, i.e., Engle-Granger 

model (1507), the TAR model with zero threshold (1505), the M-TAR model with zero 

threshold (1505), and the C-TAR model (1508). Similar conclusions can be drawn from the 

Aaa vs. Tsy case in Table 5.3.2. However, for the pairs Baa vs. Ibb and Baa vs. Tsy, the AIC 

and BIC statistics under the TAR model with zero threshold are the lowest across the five 

models. 

533. Error-correction models with asymmetric adjustments 

Consider the case of Aaa vs. Tsy. The analysis conducted in the previous section 

indicated that this pair provides the strongest evidence against symmetric adjustment in the 

sense that the null of no cointegration is rejected against the nonlinear cointegration 

alternative at the smallest test size. Next, with the confirmation of a cointegration 

relationship, the error-correction model was estimated, which incorporates the momentum 



www.manaraa.com

106 

consistent threshold autoregressive asymmetric adjustment structure (with t-statistics in 

parentheses)^: 

Ar^ = 0.0026-0.00281,-0.0099(1-1, )jl,_, + 0.4717 Ar^,_, -0.3390Ar^ 

(0.198) (-0.063) (-0.138) (4.443) (-3.160) 

-0.083 lAr^,_, +0.14176^,^ ̂ 

(-0.588) (1.086) 

and 

Ar^,, = 0.0044 - 0.03911,^,-0.1431(1-1,)p,+0.4030Ar^,_, -0.1654Ar^ 

(0.452) (-1.226) (-2.714) (5.172) (-2.101) 

-0.0029Ar^,_,-0.0539Ar^,_, 

(-0.028) (-0.563) 

where: p,_, = - 0.6693 -1.0019r^, and the Heaviside indicator is given by: 

Jl, if >-0.080, 

' [0, if A)V, < -0.080. ' ' ' 

Notice that, p,_, = - 0.6693 -1.0019r^, is the residual of the estimated long-run 

equilibrium relationship. Following the Enders-Siklos methodology, the estimated long-run 

equilibrium relationship (with t statistics in parentheses) is: 

= 0.6693 + 1.0019%^ + , 

(12.340) (145.742) 

where r^ and r^ are the values of Aaa and Tsy, respectively. 

The above estimates show that both Aaa and Tsy adjust moderately to positive 

change in . Within any month, the Tsy rate adjusts roughly 0.28% and the Aaa rate 

In the error correction setting, lagged terms were estimated to be from zero to three. Then, based on AIC and 
BIC criteria, the best fitted model is reported. The same procedures apply to other pairs. 
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adjusts 3.91% in response to a positive 1-unit deviation from the long-run equilibrium. For a 

negative 1-unit deviation from the long-run equilibrium, the corporate rates Aaa adjust more 

strongly (14.31%) than the Tsy rates (about 0.99%). Thus, adjustment to the long-run 

equilibrium shows a strong tendency when the Aaa rates wander away from the cointegration 

relationship with a negative change in . 

For comparison purposes, the linear error-correction model was also estimated with 

symmetric adjustment. Continuing to look at the case of Tsy vs. Aaa, one can determine: 

Ar^_, = 0.0027- 0.004#,+0.4714Ar^,_, -0.3393Ar^,_2 

(0.200) (-0.122) (4.447) (-3.168) 

and 

-0.0824Ar^,_, + 0.1414Ar^,_; 

(-0.584) (1.086) 

Ar^, = 0.0047-0.0660^1,+ 0.3983Ar^,_, -0.1698Ar^,_, 

(0.480) (-2.367) (5.103) (-2.153) 

+ 0.0078Ar^,_, -0.0571Ar^,_, 

(5.3.4) 

(5.3.5) 
(0.076) (-0.595) 

where: = r^,_, - 0.6693 -1.0019%,. 

Within the regime of symmetric adjustment, these estimates show that for both rates 

the adjustments to the long-run equilibrium are relatively slow. Overall, for a 1-unit gap 

away from long-run equilibrium, Tsy and Aaa adjust roughly 0.46% and 6.60%, respectively, 

regardless of the sign of the deviation from long-run equilibrium. 

For the pair of Aaa vs. Ibb, under the asymmetric adjustment regime (M-C TAR), the 

error-correction model is given in equations (5.3.6) and (5.3.7): 
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A%b, = 0.0070 + 0.03871,+0.1873(1-I,)^,_, +0.1178Ar^ +0.0198Ar^ 

(0.460) (0.706) (1.608) (1.515) (0.236) 

+ 0.0238Ar^,_, -0.1953Ar^,_, ^ 

(0.193) (-2.569) 

and 

Ar^, = 0.0036-0.07191,- 0.0773(1 - I,)^l,_, + 0.4593Ar^,_i + 0.0089Ar,*^ 

(0.435) (-2.391) (-1.211) (10.785) (0.193) 

+ 0.0352Ar^,_, - 0.1368Ar^,_, 

(0.521) (-3.286) 

where: = r^,_, - 0.4260 -1.0178%*,, and the Heaviside indicator is given by: 

1, if A^-0.2,8, 

' [0, if Ap,_, <-0.218. 

Notice that the estimated long-run equilibrium relationship (with t statistics in 

parentheses) is: 

=  0 - 4 2 6 0 + 1 . 0 1 7 8 % , , ,  

(8.281) (158.157) 

where r^, and %, are the values of Aaa and Ibb, respectively. 

Similarly, the linear error-correction model with symmetric adjustment is: 

Arm,., = 0.0045+0.0593&,_, +0.1135Ar^,_, +0.0197Ar^,_2 

(0.302) (1.131) (1.461) (0.234) 

+0.0212Ar^,_, -0.1917Ar^,_, 
, (5.3.9) 

(0.171) (-2.522) 

and 
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AT*., = 0.0037 - 0.0722&_, + 0.4607Ar^,_, + 0.0093Ar^,^ 

(0.450) (-2.521) (10.852) (0.202) 

+ 0.0338Ar^,_i -0.1365Ar^,_, 1 im 

(0.499) (-3.286) 

with: = r^,_, -0.4260-1.0178rg*,_,. 

For the pair of Baa vs. Ibb, under the asymmetric adjustment regime (C-TAR), the 

error-correction model is given in equations (5.3.11) and (5.3.12): 

Arm,., = 0.0018 + 0.04881,+ 0.0306(1-1,)jl,_, + 0.1503Ar^,_, -0.09206%*, 

(0.107) (1.368) (0.482) (2.609) (-1.156) 

(5.3.11) 

and 

Ar^_, = -0.0078-0.01221^,-0.1090(1-1,)^ + 0.3747Ar^ ,_, + 0.18486^ 

(-0.987) (-0.722) (-3.636) (13.774) (4.923) 

(5.3.12) 

where: p,,_, = r^ ,_, - 0.4186 - 1.1514rg*, and the Heaviside indicator is given by: 

Notice that the estimated long-run equilibrium relationship (with t statistics in 

is: 

= 0.4186+ 1.1514% ,_1 + jl,_i, 

(5.239) (115.217) 

where r^ and r^ are the values of Baa and Ibb, respectively. 

Similarly, the linear error-correction model with symmetric adjustment is: 
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and 

AW = 0.0036+0.0449#,+0.1522Ar^,_,-0.0910Ar^_, 

(0.241) (1.414) (2.655) (-1.148) 

Ar,,,»,, = 0.0020 - 0.0342&_, + 0.3816Ar^,_i +0.1918Ar^,_, 

(0.285) (-2.260) (13.976) (5.082) 

(5.3.14) 

(5.3.15) 

where: = r*.,_, - 0.4186 -1.1514r^,_,. 

For the pair of Baa vs. Tsy, under the asymmetric adjustment regime (M-C TAR), the 

error-correction model is given in equations (5.3.16) and (5.3.17): 

A%y., = 0.0027 - 0.00351,+ 0.0237(1 -1, )&,_, +0.4571Ar^ ,_, -0.2878Ar^ ^ 

(0.203) (-0.114) (0.413) (5.478) (-3.653) 

- 0.0760Ar^,_, + 0.0975Ar„„,w n 
, (5.3.16) 

(-0.583) (0.859) 

and 

Ar^ , =0.0032-0.03691,^,-0.0962(1-1, )^,_, + 0.2775Ar^_,_, -0.1406Ar^,,_2 

(0.373) (-1.907) (-2.638) (5.232) (-2.808) 

+ 0.204lAr**,., + 0.0445Ar^,_2 (5 3 17) 

(2.462) (0.616) 

where: = r^ ,_, - 0.6810 - 1.1352r^ ,_,, and the Heaviside indicator is given by: 

jl, if -0.151, 

' [0, i f  Ah, < - 0 . 1 5 1 .  

Notice that the estimated long-run equilibrium relationship (with t statistics in 

parentheses) is: 

t-i =0.6810 + 1.1352r„y,_, + jl,_i, 

(8.742) (114.965) 



www.manaraa.com

I l l  

where and r^ are the values of Baa and Tsy, respectively. 

Similarly, the linear error-correction model with symmetric adjustment is given in 

equations (5.3.19) and (5.3.20): 

4%, , =0.0028+0.001 + 0.460lAr^,_, -0.2847Ar^,_z 

(0.207) (0.065) (5.536) (-3.632) 

and 

-0.0827Ar^,_,+0.0952Ar^ 

(-0.639) (0.841) 

Arg*, =0.0030-0.0484&_, +0.271 lAr^,_, -0.1474Ar^ ^ 

(0.358) (-2.723) (5.120) (-2.951) 

+ 0.2187Ar^,_,+0.0494Ar^_, 

(2.653) (0.685) 

where: =rg^_, - 0.6810-1.1352r^,_,. 

(5.3.19) 

(5.3.20) 

5.4. Recommendations 

With the new methodologies to obtain deeper understanding of the adjustment 

structure, one may conduct further analysis to investigate whether there are gains by 

incorporating the asymmetric adjustment structure into model building. 
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Table 53.1. Cointegration test for Aaa vs. Ibb (sample: 1/1960 to 12/1997, n = 456) 

Model 
(Lag= 1) 

Engle-
Granger 

TAR M-TAR C-TAR 
(ao = -0.301) 

M-C TAR 
(ao = -0.218) 

P, -0.240 -0.234 -0.259 -0.221 -0.212 

(-6.693)' (-5.313) (-5.379) (-5.400) (-5.553) 

P2 NA -0.251 -0.220 -0.296 -0.404 

(-4.475/ (-4.365) (-4.469) (-4.726) 

7i -0.215 -0.215 -0.211 -0.214 -0.209 

(-4.674)8 (-4.669) (-4.532) (-4.664) (-4.571) 

AIC/BIC" 1507/1515 1505/1518 1505/1517 1508/1522 1504/1517 

0" NA 22.376 22.532 22.885 24.788 

Pl = Pz' NA 0.057 0.341 0.989 4.446 

(0.812) (0.560) (0.321) (0.036) 

0(4)" 4.602 4.615 4.682 4.766 3.862 

(0.331)" (0.329) (0.321) (0.312) (0.425) 

Note: 
* AIC = T*ln(residual sum of squares) + 2*n; BIC = T*ln((residual sum of squares) + 
n*ln(T), where n = number of regressors and T = number of usable observations. 

** Entries in this row are the sample F-statistics for testing the null of p, = p% = 0. 
^ Entries in this row are the sample F-statistics for the null hypothesis that adjustments are 
symmetric. The corresponding significance levels are contained in brackets. 

^ Q(4) is the Ljung-Box statistics for the joint hypotheses of no serial correlation among the 
first four residuals. 

" Entries in the brackets of this row are the t-statistics for the null hypothesis p, = 0. 

^ Entries in the brackets of this row are the t-statistics for the null hypothesis p% = 0. 

^ Entries in the brackets of this row are the t-statistics for the null hypothesis y, = 0. 
^ Entries in the brackets of this row are the significance level for the Ljung-Box Q-
statistics. 
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Table 5.3.2. Cointegration test for Aaa vs. Tsy (sample: 1/1960 to 12/1997, n = 456) 

Model 
(Lag = 2) 

Engle-
Granger 

TAR M-TAR C-TAR 
(ao = -0.443) 

M-C TAR 
(ao = -0.080) 

PI -0.059 -0.051 -0.026 -0.035 -0.034 

(-3.474)= (-2.219) (-0.998) (-1.732) (-1.732) 

PZ NA -0.068 -0.082 -0.118 -0.134 

(-2.784/ (-3.753) (-3.868) (-4.070) 

7, -0.060 0.060 0.052 0.062 0.059 

(-1.292/ (1.289) (1.129) (1.349) (1.292) 

Ï 2  -0.167 -0.168 -0.176 -0.167 -0.171 

(-3.619/ (-3.633) (-3.788) (-3.624) (-3.727) 

AIC/BIC" 940/952 937/954 939/956 936/953 935/951 

NA 6.156 7.445 8.785 9.618 

P,=PZ' NA 0.261 2.773 5.381 7.004 

(0.609) (0.097) (0.021) (0.008) 

Q(4)D 1.442 1.285 1.577 1.309 1.880 

(0.837)" (0.864) (0.813) (0.860) (0.758) 

Note: 
" AIC = T*ln(residual sum of squares) + 2*n; BIC = T*ln((residual sum of squares) + 

n*ln(T), where n = number of regressors and T = number of usable observations. 
" Entries in this row are the sample F-statistics for testing the null of p, = p% = 0. 
^ Entries in this row are the sample F-statistics for the null hypothesis that adjustments are 
symmetric. The corresponding significance levels are contained in brackets. 

^ Q(4) is the ljung-Box statistics for the joint hypotheses of no serial correlation among the 
first four residuals. 

" Entries in the brackets of this row are the t-statistics for the null hypothesis p, = 0. 

^ Entries in the brackets of this row are the t-statistics for the null hypothesis p% = 0. 

B Entries in the brackets of this row are the t-statistics for the null hypothesis y, = 0. 
" Entries in the brackets of this row are the significance level for the Ljung-Box Q-

statistics. 
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Table 53.3. Cointegration test for Baa vs. Ibb (sample: 1/1960 to 12/1997, n = 456) 

Model 
(Lag = 3) 

Engle-
Granger 

TAR M-TAR C-TAR 
(ao = -0.478) 

M-C TAR 
(ao =-0.071) 

Pi -0.133 -0.117 -0.149 -0.102 -0.101 

(-4.439)' (-3.200) (-3.494) (-3.040) (-2.706) 

Pz NA -0.160 -0.120 -0.225 -0.182 

(-3.506/ (-3.112) (-4.111) (-4.054) 

7i -0.140 -0.140 -0.135 -0.136 -0.149 

(-2.874/ (-2.864) (-2.704) (-2.796) (-3.038) 

72 -0.075 -0.075 -0.074 -0.075 -0.078 

(-1.560/ (-1.565) (-1.521) (-1.563) (-1.611) 

73 -0.165 -0.166 -0.164 -0.169 -0.167 

(-3.538/ (-3.560) (-3.504) (-3.634) (-3.593) 

AIC/BIC* 1714/1730 1708/1728 1715/1736 1712/1732 1714/1734 

0" NA 10.152 9.972 11.942 10.959 

Pi = Pz' NA 0.617 0.272 4.023 2.162 

(0.433) (0.602) (0.045) (0.142) 

Q(4)D 1.333 1.385 1.330 1.331 1.302 

(0.856)" (0.847) (0.856) (0.856) (0.861) 

Note: 
* AIC = T*ln(residual sum of squares) + 2*n; BIC = T*ln((residual sum of squares) + 
n*ln(T), where n = number of regressors and T = number of usable observations. 

" Entries in this row are the sample F-statistics for testing the null of p, = p% = 0. 
" Entries in this row are the sample F-statistics for the null hypothesis that adjustments are 

symmetric. The corresponding significance levels are contained in brackets. 
^ Q(4) is the Ljung-Box statistics for the joint hypotheses of no serial correlation among the 
first four residuals. 
' Entries in the brackets of this row are the t-statistics for the null hypothesis p, = 0. 

^ Entries in the brackets of this row are the t-statistics for the null hypothesis p% = 0. 

* Entries in the brackets of this row are the t-statistics for the null hypothesis y, = 0. 
" Entries in the brackets of this row are the significance level for the Ljung-Box Q-
statistics. 



www.manaraa.com

115 

Table 53.4. Cointegration test for Baa vs. Tsy (sample: 1/1960 to 12/1997, n = 456) 

Model 
(Lag = 2) 

Engle-
Granger 

TAR M-TAR C-TAR 
(ao = -0.569) 

M-C TAR 
(ao =-0.151) 

Pi -0.074 -0.061 -0.044 -0.053 -0.053 

(-4.081)' (-2.590) (-1.667) (-2.462) (-2.605) 

Pz NA -0.093 -0.101 -0.123 -0.156 

(-3.396/ (-4.114) (-3.906) (-4.006) 

7i 0.231 0.232 0.224 0.232 0.225 

(5.103/ (5.111) (4.910) (5.134) (4.977) 

72 -0.208 -0.209 -0.218 -0.209 -0.214 

(-4.521/ (-4.552) (-4.711) (-4.558) (-4.671) 

AIC/BIC* 1324/1336 1319/1336 1323/1340 1322/1339 1320/1337 

0" NA 8.747 9.642 10.269 11.221 

Pi = Pz' NA 0.842 2.569 3.778 5.614 

(0.359) (0.110) (0.053) (0.018) 

Q(4/ 6.312 6.358 5.739 6.745 5.600 

(0.177)" (0.174) (0.220) (0.150) (0.231) 

Note: 
* AIC = T*ln(residual sum of squares) + 2*n; BIC = T*ln((residual sum of squares) + 

n*ln(T), where n = number of regressors and T = number of usable observations. 
" Entries in this row are the sample F-statistics for testing the null of p, = p% = 0. 
^ Entries in this row are the sample F-statistics for the null hypothesis that adjustments are 
symmetric. The corresponding significance levels are contained in brackets. 

^ Q(4) is the Ljung-Box statistics for the joint hypotheses of no serial correlation among the 
first four residuals. 
' Entries in the brackets of this row are the t-statistics for the null hypothesis p, = 0. 

^ Entries in the brackets of this row are the t-statistics for the null hypothesis p% = 0. 

^ Entries in the brackets of this row are the t-statistics for the null hypothesis y, = 0. 
" Entries in the brackets of this row are the significance level for the Ljung-Box Q-

statistics. 



www.manaraa.com

116 

chapter 6. forecasting performance evaluation 

6.1. Introduction 

After obtaining different ways of modeling corporate bond and Treasury rates, it is 

important to determine which models offer better forecasts, since good forecasts will usually 

lead to better decision-making. To evaluate which model provides the best forecasting 

performance, one-step-ahead to six-step-ahead forecasts of six estimated models were 

applied as described in the previous sections using six forecast accuracy measures: (a) mean 

error (ME); (b) error variance (EV); (c) root mean squared error (RMSE); (d) root mean 

squared percent error (RMSPE); (e) mean absolute error (MAE); and (f) mean absolute 

percent error (MAPE). The following models were evaluated: (1) Lo-Zivot three-regime 

models with lag length equal to 1 and 2 (equations 5.1.2-5.1.17); (2) Hansen-Seo two-regime 

model with cointegration vector estimated from the model ("P estimated" in the table); and 

(3) Hansen-Seo two-regime model with cointegration vector set to unity ("P = 1" in the table, 

equations 5.2.2 to 5.2.5 and 5.2.10 to 5.2.21); (4) Enders-Siklos two-regime model (equations 

5.3.1-5.3.2, 5.3.6-5.3.7, 5.3.11-5.3.12, and 5.3.16-5.3.17); and (5) Engle-Granger linear 

model (equations 5.3.4-5.3.5, 5.3.9-5.3.10, 5.3.14-5.3.15, and 5.3.19-5.3.20). In addition, the 

Neal-Rolph-Morris (2000, hereafter NRM) Johansen type cointegration model was also 

included in the comparison for the pairs of Aaa vs. Tsy and Baa vs. Tsy (equations 6.1-6.4). 

The results were extracted from Table 6 of NRM, with the following cointegrated vector 

error-correction models. For the Aaa vs. Tsy pair (t-statistics are shown at parentheses): 

Arr*., = -0.0007+ 0.0069(r^,_, -1.028^)+0.47626^^,- 0.33706%,, 

(-0.030) (0.185) (4.496) (-3.146) 
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-0.0847Ar^,_, + 0.1425Ar^ ^ ^ 

(-0.601) (1.094) 

and 

Ar^, = 0.0324-0.0585(r^,_,-1.028r^,_,)+0.4017Ar^,_,-0.1682Ar^^ 

(1.974) (-2.123) (5.143) (-2.130) 

+ 0.0054Ar^,_, - 0.0579Ar^ ,_2 

(0.052) (-0.602) 

For the Baa vs. Tsy pair: 

A%y, =-0.0016+0.0119(r^,_, -1.178r^_,)+0.4647Ar^_, -0.2828Ar^_, 

(-0.096) (0.432) (5.597) (-3.610) 

—0.0809ATg^,_, +0.1002ATg^,_2 

(-0.626) (0.883) 

and 

Ar»*, = 0.0186-0.0433(r^,_,-1.178%,,,_,) + 0.2738A%,,_,-0.1458Ar^ 

(1.747) (-2.469) (5.167) (-2.918) 

+ 0.2177Arg^,_, + 0.0492Ar^,_2 

(2.637) (0.680) 

6.2. Forecasting methodology 

First, the estimated models were used to forecast based on the period (from 1/1998 

through 12/2002), and then the forecasts were compared to the actual data. In each h-step-

ahead forecast (h = 1,2 6), a bivariate time series was generated by incorporating the 

coefficients estimated from the fitted model of each pair of rates. Sixty periods of long rates 
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(Aaa, or Baa) and short rates (Tsy, or Ibb) were generated in each system of equations using 

the following procedure: (a) using data through 12/1997, make a one-step-ahead forecast 

(and compute the forecast error); (b) using the estimated model and data through 1/1998, 

make another one-step-ahead forecast (and compute the forecast error); (c) using the data 

through 2/1998, and so on. This provides a sequence of one-step-ahead forecast errors for 

each estimated model. One could then compare, for example, the root mean-squared one-

step-ahead forecast errors across models. The same method can be applied for two-step-

ahead forecasts: utilize data through 12/1997 to generate a two-step-ahead forecast by 

incorporating the one-step-ahead forecast value obtained from previous step as the value of 

1/1998. Then, use data through 1/1998 to generate the next two-step-ahead forecast, and so 

on. This sequence is repeated for three, four, five, and six-step-ahead forecasts across 

models. 

After determining the forecast values, six common accuracy measures were 

calculated to evaluate the forecast performance: mean error (ME), error variance (EV), root 

mean squared error (RMSE), root mean squared percent error (RMSPE), mean absolute error 

(MAE), and mean absolute percent error (MAPE). Because ME measures bias, other things 

being the same, a forecast with a small ME was preferred. EV measures dispersion of the 

forecast errors. Other things being the same, a forecast with small EV was preferred. Some 

other accuracy measures that were performed are: RMSE, RMSPE, MAE and MAPE (see 

Appendix C for detailed definitions). 
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6.3. Forecasting performance evaluation 

Tables 6.3.1 to 6.3.14 report the results of the forecast performance of long rates (Aaa 

and Baa) versus short rate (Treasury). In Tables 6.3.15 to 6.3.26, the forecasted short rate is 

compared to the Ibbotson bond index. In each table, six measures of forecast accuracy are 

calculated for one-step-ahead forecast to six-step-ahead forecast for both long and short rates. 

The lower panel also calculates the sum of each measure for both long and short rates. 

Tables 6.3.1 to 6.3.7 consider the pair of Aaa vs. Tsy. The second column of the table 

presents the result of 1-step-ahead forecast. The accuracy measure ME shows that, on 

average, all seven models under-estimate the values of Aaa around 1.23 to 5.40 bp (note that: 

1 bp = 1 basis point = 0.01%), since ME > 0. In contrast, on average, six forecast models 

consistently over-estimate the values of Tsy in the range of 2.43 to 23.84 bp for 1-step-ahead 

forecasts, since ME < 0. The exception is the Lo-Zivot three-regime model with lag length 

set to two, on average, this model underestimates the Tsy around 40.40 bp. The results also 

show that all forecast accuracy measures follow the correct pattern, i.e., as h increases, the 

magnitude of forecast accuracy measure increases. 

Across different model specifications, if one focuses on the result of 1-step-ahead 

forecast, the specification of Enders-Siklos' M-C TAR, with lag length equal to two, offers 

the best performance with four smallest accuracy measures: RMSE, RMPSE, MAE and 

MAPE, among the seven models. The three-regime Lo-Zivot specification (with one lag in 

level) offers the smallest EV. For the 6-step-ahead forecast, the EV and RMSE are smallest 

in the specification of NRM. The other linear model, Engle-Granger, has the smallest 

RMSPE and MAE among the seven models. However, Hansen-Seo, with unity cointegrating 

vector, provides the smallest MAPE. It is interesting to observe that the threshold 
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cointegration model such as Enders-Siklos dictates the 1-step-ahead forecast performance, 

whereas two linear cointegration models such as Engle-Granger, and NRM have better 6-

step-ahead forecast performance. Figures 6.1 to 6.3 depict the out-of-sample forecasting 

values versus the actual rates of Enders-Siklos, Engle-Granger and NRM models. 

Tables 6.3.8 to 6.3.14 summarize the forecasting performance results of Baa vs. Tsy 

pair. For the Baa forecasting, the 1-step-ahead forecasting results show that, on average, all 

seven models under-estimate the actual Baa rates in the range from 2.66 bp to 5.44 bp, since 

ME > 0. Five of the seven models over-estimate the Tsy rates in the range from 1.83 bp to 

4.59 bp with the exception of two Lo-Zivot three-regime models. Lo-Zivot models 

underestimate the Tsy rates from 1.08 bp to 10.59 bp. Moreover, Hansen-Seo two-regime, 

with unity cointegrating vector, offers the best fit among seven models: for both 1-step-ahead 

and 6-step-ahead forecasts, the accuracy measures are smallest among models (except the EV 

of 1-step-ahead forecast). For this model, on average, 1-step-ahead forecast of the Baa rates 

are underestimated by about 3.60 bp, while the forecast of the Treasury rates are 

overestimated by about 1.83 bp. However, the 6-step-ahead forecast error is larger. On 

average, the Baa rates are underestimated by 15 .69 bp, while the Treasury rates are 

overestimated by 21.38 bp. This model tackles the rate spreads directly by setting the 

cointegrating vector as [1, -1], against estimating the cointegrating vector from the model. 

The other model of Hansen-Seo, with cointegrating vector estimated from the model, is the 

runner-up for the 1-step-ahead forecasting performance with Gve better accuracy measures: 

EV, RMSE, RMPSE, MAE and MAPE. For comparison purposes, figures of the out-of-

sample forecasted values of two Hansen-Seo two-regime threshold cointegration models and 

the linear NRM model are presented in Figures 6.4 to 6.6. 
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The forecasting performance evaluation of Aaa vs. Ibb pair is summarized in Tables 

6.3.15 to 6.3.20. For the 1-step-ahead forecast, on average, all six models underestimate the 

Aaa rates (in the range from 1.77 bp to 14.21 bp). Similarly, four out of six models 

overestimate the Ibb rates (in the range of 3 .82 bp to 7.06 bp) with the exception of two Lo-

Zivot three-regime models (underestimates 22.48 bp and 9.16 bp, respectively). The 

previous exceptions show a similar pattern as the Baa vs. Tsy pair. That is, long rates are 

under-estimated for all specifications, whereas short rates are over-estimated for five models, 

with the exception of two Lo-Zivot three-regime specifications. Hansen-Seo two-regime, 

with estimated cointegrating vector, offers the best fit. All five accuracy measures (EV, 

RMSE, RMSPE, MAE and MAPE) are the smallest among the six models for both 1-step-

ahead and 6-step-ahead forecasts. In addition, it must be noted that, in this Hansen-Seo 

model, the Aaa rates are underestimated about 3.69 bp (1-step-ahead) to 7.54 bp (6-step-

ahead), while the Ibb rates are overestimated about 3.82 bp (1-step-ahead) to 20.13 bp (6-

step-ahead). For comparison purpose, the figures of two Hansen-Seo two-regime threshold 

cointegration models are presented in Figures 6.7 and 6.8. 

For the pair of Baa vs. Ibb, as shown from Tables 6.3 .21 to 6.3.26, on average, for the 

1-step-ahead forecast, Gve out of six models underestimate the Baa rates (in the range of 1.06 

bp to 5.07 bp) with the exception of Lo-Zivot three-regime model, with lag length equal to 

one, (overestimates by 1.30 bp). In contrast, four out of six models overestimate the Ibb rates 

(0.72 bp to 4.89 bp) with the exception of two Lo-Zivot three-regime models (underestimates 

by 3.07 bp and 0.31 bp, respectively). For 1-step-ahead forecast evaluation, Lo-Zivot three-

regime with lag equal to one offers the best fit for Ave accuracy measures (EV, RMSE, 

RMPSE, MAE and MAPE). For 6-step-ahead forecast evaluation, Hansen-Seo two-regime 
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with unity cointegrating vector exhibits the best fit. The forecasted values and the actual 

rates of two better-fitted models are presented in Figures 6.9 and 6.10. 

6.4. Lo-Zivot Three-Regime Model with a non-nnity cointegrating vector 

In the estimations of the Lo-Zivot three-regime threshold cointegration models, the 

cointegrating vector were set to [1, -1], because there is no prior information about the values 

of the cointegrating vectors. The results of other model specifications, e.g., NRM and 

Hansen-Seo two-regime models, have confirmed that it is not necessary for the cointegrating 

vector to be [1, -1]. Hence, further investigation was conducted. The Lo-Zivot three-regime 

threshold cointegration model was estimated with lag length set to two in levels by 

incorporating different cointegrating vectors obtained from other model specifications. For 

example, for the pair of Aaa versus Tsy, two more specifications were estimated by 

incorporating the cointegrating vectors of [1, -1.028] (from NRM) and [1, -1.039] (from 

Hansen-Seo). For the pair of Baa versus Tsy, the cointegrating vectors of [1, -1.178] (from 

NRM) and [1, -1.108] (from Hansen-Seo) were incorporated. For the pairs of Aaa vs. Ibb 

and Baa vs. Ibb, the cointegrating vectors are [1, -0.981] and [1, -1.385], respectively. The 

estimated coefficients and key results of aforementioned six models are displayed in Table 

6.4.1. Tables 6.4.2 to 6.4.7 summarize the 1-step-ahead to 6-step-ahead forecasting 

performance evaluation. 

One may compare the results summarized by Table 6.4.1 (with non-unity 

cointegrating vector) to the results from Table 5.2.1 (with unity cointegrating vector). For 

the Aaa vs. Tsy pair, with the cointegrating vectors set to [1, -1.028], [1, -1.039], and [1, -1], 

the distribution of the observations fell into different regimes are as the following: (68,96, 
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290), (70, 71, 313), and (121, 131, 202). The LRij statistics increase from 43.89 to 52.09 

and 67.34, if one relaxes the unity cointegrating vector assumption. The p-values decrease 

from 0.022 to 0.004 and 0.001 with 1000 simulation replications. For the pair of Baa vs. Tsy, 

with the cointegrating vectors set to [1, -1.178], [1, -1.108], and [1, -1], the distribution of the 

observations fell into different regimes are: (75,271,108), (78,309,67), and (234,115,105). 

With non-unity cointegrating vectors, over half of the observations fell into the middle 

random walk regimes versus 26% for the unity cointegrating vector specification. 

For the Aaa vs. Ibb pair, with the cointegrating vector [1, -0.981], the calculated p-

value was initially 0.011. However, it was 0.869 when the cointegrating vector was set to [1, 

-1]. A similar pattern was observed for the pair of Baa vs. Ibb. The calculated p-value 

approaches zero if the cointegrating vector is [1, -1.385], while the calculated p-value was 

0.567 with unity cointegrating vector. 

The following conclusions were made from the out-of-sample forecast evaluation of 

above models with non-unity cointegrating vectors. In general, there are still some gains. 

For the 1-step-ahead forecast, the conclusions of the leading forecasting model in each pair of 

interest rates stand the same. However, for the 6-step-ahead forecast, for the Baa vs. Tsy 

pair, if one sets the cointegrating vector as [1, -1.1781] then this specification offers better 

accuracy measures (RMSE, RMSPE, MAE, MAPE) than the Hansen-Seo specification with 

unity cointegrating vector. 
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6.5. Conclusions 

A few conclusions can be drawn from the forecasting performance evaluation: 

* For the 1-step-ahead forecast evaluation, on average, most of the forecasting models 

show a pattern of underestimating the corporate bond indices (Aaa and Baa), but 

overestimating the Treasury note and Ibbotson bond index with a few exceptions. 

* In general, for the 1-step-ahead forecast, the forecasting accuracy measures show that 

the threshold cointegration models perform better than their linear cointegration 

model counterparts. The specification of Enders-Siklos M-C TVECM offers the best 

forecasting performance to the pair of Aaa versus Tsy. The Hansen-Seo two-regime 

threshold cointegration with unity cointegrating vector specification provides the best 

forecasting performance of the pair Baa versus Tsy. For the pair of Aaa versus Ibb, 

the Hansen-Seo two-regime threshold cointegration, with estimated cointegrating 

vector specification, presents the best forecasting performance. The Lo-Zivot three-

regime threshold cointegration model, with lag length set to one in levels, is the best 

forecasting model for the pair of Baa versus Ibb. 

* The threshold cointegration specifications perform better than the linear cointegration 

models, but none of the threshold cointegration models dictate the overall 

performance across different pairs of rates. 

* Non-unity estimated cointegrating vectors were incorporated from other model 

specifications into Lo-Zivot three-regime model. Forecasting performance evaluation 

results have shown that there are some gains for this inclusion. 



www.manaraa.com

125 

Table 63.1. Forecasting performance (Aaa vs. Tsy), Lo-Zivot, lag = 1 

Aaa 1-step 2-step 3-step 4-atep 5-step 6-step 

ME 0.0357 0.0712 0.1061 0.1306 0.1567 0.1836 

EV 0.0224 0.0448 0.0716 0.0991 0.1367 0.1731 

RMSE 0.1538 0.2232 0.2879 0.3408 0.4016 0.4548 

RMSPE 0.0217 0.0317 0.0407 0.0479 0.0557 0.0624 

MAE 0.1154 0.1718 02195 0.2461 0.2888 0.3161 

MAPE 0.0165 0.0246 0.0312 0.0348 0.0407 0.0441 
Tsy 1-step 2-step 3-step 4-step 6-step 

ME (02384) (0.3921) (0.5423) (0.5642) (0.5540) (0.5215) 

EV 0.0611 0.1418 0.2392 0.3270 0.3851 0.4289 

RMSE 0.3433 0.5437 0.7302 0.8033 0.8318 0.8372 

RMSPE 0.0709 0.1147 0.1557 0.1726 0.1781 0.1779 

MAE 02878 0.4347 0.5918 0.6426 0.6789 0.7015 

MAPE 0.0571 0.0879 0.1204 0.1315 0.1384 0.1418 
Sum l-steg_ 2-atep 3-step 4-step 5-step 6-step 

ME (0.2027) (0.3209) (0.4362) (0.4336) (0.3972) (03379) 

EV 0.0834 0.1866 0.3108 0.4261 0.5218 0.6020 

RMSE 0.4971 0.7669 1.0181 1.1442 1.2334 1.2920 

RMSPE 0.0926 0.1464 0.1964 0.2205 0.2338 02402 

MAE 0.4032 0.6066 0.8113 0.8886 0.9678 1.0175 

MAPE 0.0736 0.1124 0.1516 0.1663 0.1790 0.1860 
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Table 6.3J2. Forecasting performance (Aaa vs. Tsy), Lo-Zivot, lag = 2 

Aaa | 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0123 0.1565 0.3964 0.6901 1.1188 1.5034 

EV 0.0301 0.0570 0.0905 0.1472 02971 0.4146 

RMSE 0.1740 0.2854 0.4976 0.7896 12445 1.6355 

RMSPE 0.0246 0.0407 0.0713 0.1132 0.1773 02306 

MAE 0.1351 0.2243 0.4153 0.6947 1.1234 1.5080 

MAPE 0.0193 0.0321 0.0594 0.0995 0.1605 02145 

In 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.4040 1.1379 2.0034 32163 42579 4.7526 

EV 0.0911 0.3954 0.9397 1.7388 2.0103 1.9388 

RMSE 0.5043 1.3001 2.2256 3.4761 4.4877 4.9524 

RMSPE 0.1002 0.2595 0.4422 0.6772 0.8539 0.9288 

MAE 0.4226 1.1414 2.0060 32188 42604 4.7552 

MAPE 0.0823 02220 0.3893 0.6198 0.8107 0.8985 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.4164 12944 2.3998 3.9064 5.3766 62560 

EV 0.1212 0.4523 1.0302 1.8860 2.3074 2.3534 

RMSE 0.6783 1.5855 2.7232 42657 5.7322 6.5879 

RMSPE 0.1248 0.3002 0.5135 0.7904 1.0312 1.1593 

MAE 0.5577 1.3656 2.4213 3.9136 5.3838 62632 

MAPE 0.1016 02541 0.4487 0.7193 0.9712 1.1130 
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Table 6.3.3. Forecasting performance (Aaa vs. Tsy), Hansen-Seo, lag = 2, P estimated 

Aaa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0441 0.0874 0.1326 0.1743 0.2146 0.2516 

EV 0.0373 0.0657 0.0903 0.1104 0.1459 0.1915 

RMSE 0.1981 0.2708 0.3285 0.3751 0.4381 0.5048 

RMSPE 0.0279 0.0384 0.0463 0.0527 0.0610 0.0695 

MAE 0.1562 0.2133 0.2491 0.2858 0.3272 0.3620 

MAPE 0.0222 0.0306 0.0353 0.0404 0.0461 0.0507 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0243) (0.0517) (0.0598) (0.0649) (0.0687) (0.0707) 

EV 0.0598 0.1391 0.2072 0.2739 0.3559 0.4207 

RMSE 0.2458 0.3765 0.4591 0.5274 0.6005 0.6525 

RMSPE 0.0465 0.0746 0.0924 0.1074 0.1216 0.1305 

MAE 0.2051 0.2942 0.3752 0.4506 0.5031 0.5416 

MAPE 0.0389 0.0574 0.0733 0.0885 0.0988 0.1053 
Sum 1-step 2-step 3-step 4-step S-step 6-step 

ME 0.0198 0.0356 0.0729 0.1093 0.1459 0.1809 

EV 0.0971 0.2048 02975 0.3842 0.5018 0.6123 

RMSE 0.4439 0.6473 0.7875 0.9025 1.0386 1.1573 

RMSPE 0.0744 0.1130 0.1387 0.1601 0.1826 02000 

MAE 0.3613 0.5075 0.6243 0.7364 0.8304 0.9036 

MAPE 0.0611 0.0879 0.1087 0.1289 0.1449 0.1560 
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Table 6.3.4. Forecasting performance (Aaa vs. Tsy), Hansen-Seo, lag = 2, p = 1 

Aaa 1-step 2-step 3-step 4-step 5-step 

ME 0.0441 0.0859 0.1302 0.1713 02109 02468 

EV 0.0372 0.0654 0.0901 0.1101 0.1453 0.1904 

RMSE 0.1978 02698 0.3272 0.3735 0.4356 0.5013 

RMSPE 0.0278 0.0383 0.0461 0.0525 0.0606 0.0690 

MAE 0.1560 02128 02482 02843 0.3250 0.3584 

MAPE 0.0222 0.0305 0.0352 0.0402 0.0458 0.0502 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0299) (0.0636) (0.0757) (0.0839) (0.0903) (0.0949) 

EV 0.0596 0.1384 02056 02709 0.3508 0.4134 

RMSE 02460 0.3774 0.4597 0.5272 0.5991 0.6499 

RMSPE 0.0467 0.0750 0.0929 0.1079 0.1220 0.1307 

MAE 02057 0.2953 0.3765 0.4481 0.4995 0.5359 

MAPE 0.0390 0.0577 0.0737 0.0882 0.0984 0.1044 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0141 0.0224 0.0545 0.0874 0.1206 0.1519 

EV 0.0968 02038 02957 0.3811 0.4960 0.6038 

RMSE 0.4438 0.6472 0.7869 0.9007 1.0347 1.1512 

RMSPE 0.0745 0.1133 0.1390 0.1603 0.1826 0.1997 

MAE 0.3617 0.5081 0.6247 0.7324 0.8245 0.8943 

MAPE 0.0612 0.0882 0.1089 0.1284 0.1441 0.1546 
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Table 6.3.5. Forecasting performance (Aaa vs. Tsy), Enders-Siklos, M-C TAR, lag = 2 

Aaa | 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0463 0.0762 0.1007 0.1227 0.1464 0.1686 

EV 0.0327 0.0567 0.0833 0.1237 0.1615 0.2108 

RMSE 0.1867 0.2501 0.3057 0.3724 0.4277 0.4891 

RMSPE 0.0263 0.0355 0.0433 0.0526 0.0599 0.0676 

MAE 0.1475 0.1983 0.2329 0.2852 0.3220 0.3474 

MAPE 0.0210 0.0284 0.0332 0.0406 0.0457 0.0490 

_ 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0251) (0.0647) (0.0959) (0.1191) (0.1404) (0.1577) 

EV 0.0579 0.1309 0.1947 0.2637 0.3421 0.4044 

RMSE 0.2419 0.3675 0.4516 0.5271 0.6015 0.6552 

RMSPE 0.0458 0.0733 0.0922 0.1091 0.1240 0.1336 

MAE 0.1992 0.2919 0.3683 0.4416 0.4947 0.5486 

MAPE 0.0377 0.0569 0.0724 0.0874 0.0980 0.1075 
Sum 1-step 2-atep 3-step 4-step 5-step 6-step 

ME 0.0211 0.0115 0.0048 0.0036 0.0061 0.0110 

EV 0.0906 0.1876 02780 0.3873 0.5036 0.6152 

RMSE 0.4285 0.6176 0.7573 0.8996 1.0292 1.1442 

RMSPE 0.0721 0.1087 0.1355 0.1618 0.1839 0.2011 

MAE 0.3467 0.4902 0.6012 0.7268 0.8167 0.8960 

MAPE 0.0587 0.0853 0.1056 0.1280 0.1437 0,1565 



www.manaraa.com

130 

Table 63.6. Forecasting performance (Aaa vs. Tsy), Engle-Granger, lag = 2 

Aaa 1-step 2-step 3-step 4-step_ 5-step 6-step 

ME 0.0540 0.0943 0.1240 0.1511 0.1796 02061 

EV 0.0372 0.0619 0.0807 0.1012 0.1381 0.1833 

RMSE 02002 0.2660 0.3100 0.3522 0.4127 0.4751 

RMSPE 0.0282 0.0378 0.0437 0.0494 0.0574 0.0654 

MAE 0.1545 02098 02381 0.2718 0.3073 0.3384 

MAPE 0.0220 0.0301 0.0338 0.0385 0.0433 0.0475 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0246) (0.0640) (0.0943) (0.1194) (0.1398) (0.1565) 

EV 0.0580 0.1308 0.1943 02617 0.3405 0.4023 

RMSE 0.2420 0.3673 0.4508 0.5253 0.6000 0.6533 

RMSPE 0.0458 0.0732 0.0919 0.1086 0.1236 0.1331 

MAE 0.1993 02917 0.3670 0.4429 0.4957 0.5481 

MAPE 0.0377 0.0568 0.0721 0.0875 0.0981 0.1074 
Sum 1-step 2-step 3-step 4-dep. 5-step 6-step 

ME 0.0294 0.0304 0.0297 0.0317 0.0398 0.0496 

EV 0.0951 0.1927 02750 03629 0.4785 0.5856 

RMSE 0.4423 0.6333 0.7608 0.8775 1.0127 1.1285 

RMSPE 0.0740 0.1110 0.1356 0.1581 0.1809 0.1985 

MAE 0.3538 0.5015 0.6051 0.7147 0.8029 0.8865 

MAPE 0.0597 0.0869 0.1059 0.1260 0.1414 0.1548 
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Table 63.7. Forecasting performance (Aaa vs. Tsy), Neal-Rolph-Morris, lag = 2 

Aaa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0503 0.0826 0.1049 0.1268 0.1509 0.1729 

EV 0.0373 0.0622 0.0812 0.1013 0.1373 0.1817 

RMSE 0.1995 0.2627 0.3036 0.3426 0.4001 0.4600 

RMSPE 0.0281 0.0374 0.0428 0.0482 0.0557 0.0634 

MAE 0.1544 02087 02340 0 2632 02988 0.3249 

MAPE 0.0220 0.0299 0.0332 0.0373 0.0422 0.0456 

Dy . l-#tep 2-step 3-step 4-step 5-step 6-step 

ME (0.0356) (0.0897) (0.1318) (0.1660) (0.1945) (02188) 

EV 0.0579 0.1303 0.1929 02588 0.3358 0.3959 

RMSE 02432 0.3719 0.4585 0.5352 0.6113 0.6661 

RMSPE 0.0462 0.0746 0.0943 0.1118 0.1273 0.1375 

MAE 0.2007 02955 03730 0.4443 0.4960 0.5656 

MAPE 0.0381 0.0578 0.0735 0.0882 0.0988 0.1115 
Sum 1-step 2-akp _ 3-step 4-step 5-step 6-step 

ME 0.0147 (0.0070) (0.0268) (0.0392) (0.0436) (0.0459) 

EV 0.0951 0.1925 02740 0.3602 0.4732 0.5776 

RMSE 0.4427 0.6346 0.7621 0.8778 1.0114 1.1261 

RMSPE 0.0743 0.1119 0.1371 0.1599 0.1830 0.2008 

MAE 0.3551 0.5042 0.6069 0.7075 0.7948 0.8904 

MAPE 0.0600 0.0878 0.1068 0.1256 0.1409 0.1571 
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Table 63.8. Forecasting performance (Baa vs. Tsy), Lo-Zivot, lag = 1 

Baa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0266 0.0534 0.0765 0.0752 0.0793 0.1101 

EV 0.0436 0.0945 0.1670 02552 0.3856 0.4783 

RMSE 0.2106 0.3120 0.4157 0.5108 0.6260 0.7003 

RMSPE 0.0267 0.0405 0.0543 0.0671 0.0821 0.0911 

MAE 0.1687 02660 0.3562 0.4361 0.5278 0.6020 

MAPE 0.0215 0.0343 0.0461 0.0567 0.0685 0.0777 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0108 0.0210 0.0263 0.0259 0.0347 0.0572 

EV 0.0628 0.1601 0.2622 0.3874 0.5241 0.6280 

RMSE 02509 0.4007 0.5127 0.6230 0.7248 0.7945 

RMSPE 0.0480 0.0784 0.1004 0.1212 0.1394 0.1504 

MAE 0.1989 0.3259 0.4428 0.5485 0.6239 0.6801 

MAPE 0.0380 0.0628 0.0852 0.1052 0.1190 0.1284 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0374 0.0743 0.1028 0.1011 0.1140 0.1672 

EV 0.1065 0.2546 0.4292 0.6427 0.9097 1.1063 

RMSE 0.4615 0.7127 0.9285 1.1337 1.3508 1.4948 

RMSPE 0.0747 0.1189 0.1547 0.1883 02215 0.2415 

MAE 0.3677 0.5919 0.7990 0.9847 1.1517 12821 

MAPE 0.0595 0.0971 0.1314 0.1618 0.1875 0.2062 
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Table 6.3.9. Forecasting performance (Baa vs. Tsy), Lo-Zivot, lag = 2 

Baa | 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0321 0.0912 0.1696 0.2563 0.3710 0.5058 

EV 0.0374 0.0656 0.0914 0.1217 0.1957 0.3324 

RMSE 0.1960 0.2719 0.3466 0.4329 0.5774 0.7669 

RMSPE 0.0244 0.0341 0.0440 0.0551 0.0730 0.0964 

MAE 0.1465 02063 02832 0.3432 0.4473 0.5984 

MAPE 0.0185 0.0261 0.0360 0.0438 0.0566 0.0754 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.1059 02694 0.4418 0.6448 0.8861 1.1595 

EV 0.0743 02304 0.4396 0.7732 1.3092 2.0154 

RMSE 0.2924 0.5505 0.7967 1.0904 1.4472 1.8330 

RMSPE 0.0571 0.1109 0.1594 0.2135 02798 0.3528 

MAE 0.2260 0.4317 0.6444 0.9066 12166 1.5547 

MAPE 0.0432 0.0842 0.1254 0.1751 0.2339 02988 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.1380 0.3606 0.6114 0.9011 12571 1.6652 

EV 0.1117 0.2961 0.5310 0.8950 1.5049 2.3478 

RMSE 0.4884 0.8224 1.1433 1.5233 2.0246 2.5999 

RMSPE 0.0815 0.1450 0.2034 02686 0.3528 0.4492 

MAE 0.3725 0.6380 0.9275 12498 1.6639 2.1531 

MAPE 0.0617 0.1103 0.1614 02189 0.2906 0.3742 
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Table 6.3.10. Forecasting performance (Baa vs. Tsy), Hansen-Seo, lag = 1, P estimated 

Baa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0411 0.0803 0.1132 0.1280 0.1405 0.1564 

EV 0.0380 0.0651 0.0772 0.0870 0.1103 0.1448 

RMSE 0.1993 02675 0.3001 0.3216 0.3606 0.4115 

RMSPE 0.0248 0.0336 0.0378 0.0407 0.0454 0.0513 

MAE 0.1507 0.2082 02452 0.2649 02770 0.3050 

MAPE 0.0190 0.0264 0.0311 0.0337 0.0350 0.0384 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0459) (0.1070) (0.1740) (02446) (0.3060) (0.3570) 

EV 0.0538 0.1232 0.1839 02533 0.3388 0.4015 

RMSE 0.2365 0.3670 0.4628 0.5596 0.6576 0.7272 

RMSPE 0.0451 0.0734 0.0958 0.1190 0.1406 0.1553 

MAE 0.1970 0.2965 0.3727 0.4459 0.5284 0.6044 

MAPE 0.0375 0.0580 0.0738 0.0897 0.1067 0.1217 
Sum 2-step 3-step 4-step 5-step 6-step 

ME (0.0047) (0.0267) (0.0608) (0.1166) (0.1655) (02005) 

EV 0.0919 0.1883 02611 0.3404 0.4491 0.5463 

RMSE 0.4359 0.6345 0.7628 0.8812 1.0182 1.1387 

RMSPE 0.0698 0.1069 0.1336 0.1597 0.1860 02066 

MAE 0.3477 0.5048 0.6179 0.7109 0.8054 0.9094 

MAPE 0.0566 0.0843 0.1050 0.1234 0.1417 0.1601 
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Table 6J.11. Forecasting performance (Baa vs. Tsy), Hansen-Seo, lag = 1, P = 1 

Baa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0360 0.0735 0.1044 0.1200 0.1362 0.1569 

EV 0.0375 0.0620 0.0717 0.0796 0.1023 0.1336 

RMSE 0.1969 0.2595 0.2873 0.3065 0.3476 0.3978 

RMSPE 0.0245 0.0326 0.0362 0.0389 0.0438 0.0497 

MAE 0.1479 0.1999 02338 0.2539 0.2682 0.3042 

MAPE 0.0187 0.0253 0.0297 0.0323 0.0339 0.0383 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0183) (0.0534) (0.1011) (0.1499) (0.1868) (0.2138) 

EV 0.0548 0.1247 0.1879 0.2608 0.3457 0.4089 

RMSE 0.2348 0.3571 0.4451 0.5322 0.6169 0.6742 

RMSPE 0.0449 0.0711 0.0918 0.1127 0.1311 0.1429 

MAE 0.1912 02977 0.3653 0.4292 0.4876 0.5543 

MAPE 0.0366 0.0580 0.0722 0.0861 0.0982 0.1108 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0177 0.0201 0.0033 (0.0298) (0.0506) (0.0569) 

EV 0.0923 0.1866 0.2596 0.3404 0.4479 0.5425 

RMSE 0.4318 0.6166 0.7325 0.8388 0.9645 1.0721 

RMSPE 0.0693 0.1036 0.1280 0.1516 0.1749 0.1925 

MAE 0.3391 0.4976 0.5991 0.6832 0.7558 0.8584 

MAPE 0.0552 0.0833 0.1019 0.1184 0.1321 0.1491 
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Table 6.3.12. Forecasting performance (Baa vs. Tsy), Enders-Siklos, M-C TAR, lag = 2 

Baa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0539 0.1040 0.1547 0.1936 0.2314 0.2706 

EV 0.0408 0.0676 0.0839 0.1062 0.1283 0.1681 

RMSE 0.2091 0.2800 0.3283 0.3790 0.4265 0.4913 

RMSPE 0.0259 0.0351 0.0411 0.0475 0.0531 0.0607 

MAE 0.1582 0.2192 0.2628 0.3049 0.3265 0.3599 

MAPE 0.0199 0.0277 0.0332 0.0385 0.0410 0.0450 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0300) (0.0731) (0.1112) (0.1448) (0.1709) (0.1917) 

EV 0.0572 0.1282 0.1886 0.2534 0.3360 0.3997 

RMSE 0.2410 0.3655 0.4483 0.5238 0.6043 0.6606 

RMSPE 0.0458 0.0729 0.0916 0.1089 0.1254 0.1364 

MAE 0.1989 02901 0.3624 0.4351 0.4905 0.5504 

MAPE 0.0378 0.0566 0.0713 0.0862 0.0974 0.1084 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0239 0.0309 0.0435 0.0488 0.0605 0.0789 

EV 0.0980 0.1958 0.2724 0.3596 0.4643 0.5678 

RMSE 0.4500 0.6455 0.7766 0.9028 1.0307 1.1519 

RMSPE 0.0718 0.1080 0.1327 0.1564 0.1785 0.1971 

MAE 0.3571 0.5093 0.6251 0.7400 0.8171 0.9103 

MAPE 0.0578 0.0843 0.1046 0.1247 0.1385 0.1534 
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Table 6.3.13. Forecasting performance (Baa vs. Tsy), Engle-Granger, lag = 2 

Baa | 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0544 0.1101 0.1652 0.2075 02481 02898 

EV 0.0425 0.0706 0.0839 0.0971 0.1217 0.1628 

RMSE 0.2132 0.2876 0.3335 0.3744 0.4282 0.4967 

RMSPE 0.0265 0.0360 0.0418 0.0470 0.0534 0.0616 

MAE 0.1626 0.2236 0.2670 0.3053 0.3345 0.3740 

MAPE 0.0205 0.0283 0.0338 0.0386 0.0420 0.0468 

TV 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0303) (0.0765) (0.1174) (0.1533) (0.1810) (0.2031) 

EV 0.0566 0.1269 0.1895 0.2566 0.3348 0.3965 

RMSE 0.2398 0.3643 0.4508 0.5292 0.6063 0.6617 

RMSPE 0.0456 0.0729 0.0926 0.1104 0.1261 0.1364 

MAE 0.1975 0.2900 0.3655 0.4396 0.4934 0.5618 

MAPE 0.0375 0.0566 0.0721 0.0872 0.0981 0.1107 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0241 0.0336 0.0478 0.0542 0.0671 0.0866 

EV 0.0991 0.1975 02734 0.3537 0.4566 0.5593 

RMSE 0.4530 0.6519 0.7843 0.9036 1.0345 1.1584 

RMSPE 0.0721 0.1090 0.1344 0.1574 0.1796 0.1979 

MAE 03600 0.5136 0.6325 0.7449 0.8279 0.9358 

MAPE 0.0580 0.0849 0.1058 0.1258 0.1402 0.1575 
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Table 6.3.14. Forecasting performance (Baa vs. Tsy), Neal-Rolph-Morris, lag = 2 

Baa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0529 0.1036 0.1535 0.1916 0.2290 02678 

EV 0.0426 0.0708 0.0836 0.0961 0.1195 0.1587 

RMSE 0.2131 0.2855 0.3273 0.3645 0.4146 0.4800 

RMSPE 0.0265 0.0358 0.0410 0.0457 0.0518 0.0595 

MAE 0.1626 0.2227 0.2614 02968 0.3213 0.3571 

MAPE 0.0205 0.0282 0.0331 0.0375 0.0404 0.0447 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0421) (0.1039) (0.1568) (02015) (02364) (02648) 

EV 0.0565 0.1264 0.1880 02541 0.3310 0.3908 

RMSE 02415 0.3705 0.4611 0.5429 0.6220 0.6789 

RMSPE 0.0461 0.0747 0.0957 0.1147 0.1312 0.1422 

MAE 0.1993 0.2952 0.3699 0.4420 0.4995 0.5769 

MAPE 0.0379 0.0579 0.0732 0.0884 0.1001 0.1146 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0108 (0.0003) (0.0033) (0.0099) (0.0075) 0.0030 

EV 0.0991 0.1972 0.2716 0.3503 0.4505 0.5495 

RMSE 0.4546 0.6560 0.7884 0.9074 1.0366 1.1589 

RMSPE 0.0726 0.1105 0.1367 0.1604 0.1830 02016 

MAE 0.3618 0.5179 0.6314 0.7389 0.8208 0.9340 

MAPE 0.0584 0.0861 0.1063 0.1259 0.1405 0.1593 
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Table 63.15. Forecasting performance (Aaa vs. Ibb), Lo-Zivot, lag = 1 

Aaa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.1421 0.3090 0.4715 0.6877 0.9405 12354 

EV 0.0251 0.0579 0.1022 0.1915 0.3661 0.6400 

RMSE 0.2129 0.3916 0.5697 0.8151 1.1183 1.4719 

RMSPE 0.0296 0.0548 0.0798 0.1145 0.1575 02077 

MAE 0.1688 0.3276 0.4844 0.6978 0.9507 1.2524 

MAPE 0.0238 0.0463 0.0683 0.0985 0.1342 0.1770 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.2248 0.4823 0.7323 1.0527 1.4195 1.8401 

EV 0.0535 0.1618 02951 0.5697 1.0045 1.6192 

RMSE 0.3225 0.6280 0.9118 12953 1.7377 22372 

RMSPE 0.0555 0.1085 0.1574 02229 0.2985 0.3844 

MAE 02600 0.5366 0.7795 1.1107 1.4930 1.9315 

MAPE 0.0447 0.0925 0.1338 0.1903 0.2557 0.3310 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.3669 0.7913 1.2039 1.7404 2.3600 3.0755 

EV 0.0786 02196 0.3972 0.7612 1.3706 22592 

RMSE 0.5354 1.0196 1.4815 2.1104 2.8560 3.7091 

RMSPE 0.0851 0.1634 0.2371 0.3374 0.4559 0.5921 

MAE 0.4288 0.8642 1.2639 1.8085 2.4437 3.1838 

MAPE 0.0686 0.1388 0.2022 02887 0.3899 0.5080 
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Table 6.3.16. Forecasting performance (Aaa vs. Ibb), Lo-Zivot, lag = 2 

Aaa I 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0177 0.0909 0.1822 02819 0.4031 0.5458 

EV 0.0320 0.0587 0.0788 0.1011 0.1616 02572 

RMSE 0.1796 0.2587 0.3347 0.4250 0.5693 0.7450 

RMSPE 0.0253 0.0367 0.0471 0.0597 0.0799 0.1045 

MAE 0.1364 0.2041 0.2746 0.3569 0.4802 0.6185 

MAPE 0.0194 0.0292 0.0391 0.0507 0.0680 0.0872 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0916 02287 0.3800 0.5480 0.7404 0.9597 

EV 0.0444 0.1084 0.1748 02870 0.4669 0.7000 

RMSE 0.2298 0.4008 0.5650 0.7664 1.0075 12732 

RMSPE 0.0392 0.0692 0.0976 0.1315 0.1721 0.2173 

MAE 0.1772 0.3258 0.4868 0.6524 0.8444 1.0762 

MAPE 0.0303 0.0562 0.0836 0.1117 0.1442 0.1837 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.1093 0.3196 0.5622 0.8299 1.1435 1.5055 

EV 0.0764 0.1670 02537 0.3881 0.6285 0.9571 

RMSE 0.4094 0.6595 0.8997 1.1913 1.5768 2.0182 

RMSPE 0.0645 0.1059 0.1446 0.1912 0.2520 0.3217 

MAE 0.3135 0.5300 0.7614 1.0094 1.3246 1.6947 

MAPE 0.0496 0.0854 0.1227 0.1624 0.2122 0.2709 
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Table 6.3.17. Forecasting performance (Aaa vs. Ibb), Hansen-Seo, lag = 1, P estimated 

Aaa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0369 0.0516 0.0613 0.0635 0.0680 0.0754 

EV 0.0302 0.0493 0.0647 0.0811 0.1131 0.1507 

RMSE 0.1778 0.2279 0.2616 0.2918 0.3431 0.3954 

RMSPE 0.0249 0.0324 0.0371 0.0414 0.0484 0.0553 

MAE 0.1322 0.1828 02166 0.2262 02603 02952 

MAPE 0.0187 0.0262 0.0310 0.0323 0.0371 0.0419 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0382) (0.0789) (0.1156) (0.1518) (0.1803) (0.2013) 

EV 0.0349 0.0716 0.1055 0.1474 0.1962 0.2400 

RMSE 0.1907 02789 0.3448 0.4128 0.4782 0.5297 

RMSPE 0.0330 0.0495 0.0617 0.0743 0.0858 0.0944 

MAE 0.1602 02299 02802 0.3361 0.3935 0.4421 

MAPE 0.0275 0.0401 0.0493 0.0591 0.0691 0.0775 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0013) (0.0273) (0.0543) (0.0883) (0.1123) (0.1259) 

EV 0.0651 0.1209 0.1702 0.2285 0.3093 0.3907 

RMSE 0.3685 0.5068 0.6063 0.7047 0.8214 0.9251 

RMSPE 0.0579 0.0819 0.0988 0.1157 0.1342 0.1497 

MAE 02924 0.4126 0.4968 0.5624 0.6538 0.7373 

MAPE 0.0463 0.0663 0.0803 0.0914 0.1062 0.1194 
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Table 63.18. Forecasting performance (Aaa vs. Ibb), Hansen-Seo, lag = 1, P = 1 

Aaa | 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0179 (0.0110) (0.0470) (0.0859) (0.1210) (0.1523) 

EV 0.0320 0.0494 0.0623 0.0788 0.1108 0.1483 

RMSE 0.1797 0.2226 02539 0.2936 0.3541 0.4142 

RMSPE 0.0253 0.0321 0.0368 0.0431 0.0521 0.0608 

MAE 0.1371 0.1822 0.2095 0.2392 02925 0.3477 

MAPE 0.0195 0.0263 0.0304 0.0350 0.0427 0.0508 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0706) (0.1513) (0.2217) (0.2880) (0.3463) (0.3967) 

EV 0.0351 0.0730 0.1085 0.1521 02023 02483 

RMSE 0.2002 0.3097 0.3970 0.4848 0.5677 0.6369 

RMSPE 0.0349 0.0554 0.0716 0.0879 0.1029 0.1151 

MAE 0.1713 0.2514 0.3148 0.3975 0.4828 0.5429 

MAPE 0.0296 0.0441 0.0557 0.0704 0.0854 0.0960 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0528) (0.1623) (0.2687) (0.3739) (0.4673) (0.5490) 

EV 0.0671 0.1225 0.1707 0.2309 0.3131 0.3966 

RMSE 0.3799 0.5323 0.6509 0.7784 0.9218 1.0511 

RMSPE 0.0602 0.0875 0.1085 0.1311 0.1550 0.1759 

MAE 0.3084 0.4337 0.5244 0.6367 0.7753 0.8907 

0.0491 0.0704 0.0861 0.1053 0.1281 0.1467 
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Table 63.19. Forecasting performance (Aaa vs. Ibb), Enders-Siklos, M-C TAR, lag = 2 

Aaa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0366 0.0469 0.0464 0.0375 0.0339 0.0344 

EV 0.0324 0.0528 0.0667 0.0848 0.1165 0.1568 

RMSE 0.1836 0.2345 0.2624 0.2936 0.3429 0.3974 

RMSPE 0.0257 0.0334 0.0371 0.0417 0.0485 0.0559 

MAE 0.1391 0.1863 0.2124 02283 02669 0.3045 

MAPE 0.0197 0.0268 0.0304 0.0326 0.0381 0.0434 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0488) (0.0994) (0.1543) (02036) (02429) (0.2740) 

EV 0.0367 0.0735 0.1054 0.1486 0.1951 02438 

RMSE 0.1976 0.2887 0.3595 0.4360 0.5040 0.5647 

RMSPE 0.0343 0.0515 0.0646 0.0787 0.0908 0.1013 

MAE 0.1632 0.2366 0.2948 0.3602 0.4305 0.4828 

MAPE 0.0281 0.0413 0.0519 0.0634 0.0758 0.0849 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0122) (0.0524) (0.1079) (0.1660) (0.2090) (02397) 

EV 0.0690 0.1263 0.1721 02334 0.3115 0.4005 

RMSE 0.3812 0.5232 0.6219 0.7295 0.8470 0.9621 

RMSPE 0.0600 0.0848 0.1018 0.1204 0.1393 0.1572 

MAE 0.3023 0.4229 0.5072 0.5885 0.6974 0.7873 

MAPE 0.0478 0.0681 0.0823 0.0960 0.1139 0.1284 
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Table 6.3.20. Forecasting performance (Aaa vs. Ibb), Engle-Granger, lag = 2 

Aaa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0366 0.0434 0.0404 0.0297 0.0246 0.0235 

EV 0.0324 0.0519 0.0672 0.0859 0.1182 0.1573 

RMSE 0.1838 0.2319 0.2623 02946 0.3447 0.3974 

RMSPE 0.0257 0.0330 0.0371 0.0419 0.0489 0.0559 

MAE 0.1392 0.1851 02121 0.2305 0.2660 0.3035 

MAPE 0.0197 0.0266 0.0303 0.0330 0.0381 0.0433 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0554) (0.1097) (0.1682) (02198) (02611) (02938) 

EV 0.0363 0.0728 0.1083 0.1509 0.1976 02420 

RMSE 0.1984 0.2912 0.3695 0.4463 0.5155 0.5730 

RMSPE 0.0344 0.0520 0.0666 0.0808 0.0930 0.1029 

MAE 0.1645 0.2388 0.2976 0.3673 0.4405 0.4910 

MAPE 0.0284 0.0418 0.0525 0.0648 0.0776 0.0864 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0188) (0.0664) (0.1277) (0.1900) (0.2365) (0.2703) 

EV 0.0687 0.1247 0.1754 02368 0.3158 0.3993 

RMSE 0.3822 0.5232 0.6318 0.7409 0.8602 0.9703 

RMSPE 0.0602 0.0850 0.1037 0.1227 0.1419 0.1588 

MAE 0.3037 0.4239 0.5096 0.5978 0.7065 0.7946 

MAPE 0.0481 0.0684 0.0828 0.0977 0.1157 0.1298 
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Table 6.3.21. Forecasting performance (Baa vs. Ibb), Lo-Zivot, lag 

Baa 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0130) (0.0269) (0.0412) (0.0349) (0.0245) (0.0177) 

EV 0.0277 0.0453 0.0593 0.0684 0.0911 0.1189 

RMSE 0.1670 02145 02469 0.2638 0.3028 0.3453 

RMSPE 0.0209 0.0275 0.0319 0.0345 0.0394 0.0445 

MAE 0.1221 0.1741 0.2029 0.2126 0.2597 0.2875 

MAPE 0.0155 0.0223 0.0260 0.0275 0.0335 0.0371 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0307 0.0494 0.0677 0.0602 0.0545 0.0570 

EV 0.0404 0.0876 0.1413 0.1927 0.2383 02697 

RMSE 0.2034 0.3000 0.3819 0.4431 0.4912 0.5224 

RMSPE 0.0347 0.0516 0.0656 0.0766 0.0848 0.0892 

MAE 0.1658 0.2528 0.3184 0.3647 0.3927 0.4207 

MAPE 0.0283 0.0434 0.0546 0.0628 0.0675 0.0720 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0178 0.0225 0.0264 0.0253 0.0299 0.0393 

EV 0.0681 0.1329 0.2006 0.2610 0.3294 0.3885 

RMSE 0.3704 0.5145 0.6288 0.7068 0.7941 0.8677 

RMSPE 0.0556 0.0791 0.0975 0.1111 0.1241 0.1338 

MAE 02879 0.4268 0.5213 0.5773 0.6524 0.7083 

0.0438 0.0657 0.0807 0.0903 0.1010 0.1090 
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Table 6.3.22. Forecasting performance (Baa vs. Ibb), Lo-Zivot, lag = 2 

Baa | 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0106 0.0283 0.0489 0.0486 0.0531 0.0642 

EV 0.0367 0.0635 0.0724 0.0853 0.1028 0.1328 

RMSE 0.1918 02535 0.2735 02961 0.3249 0.3700 

RMSPE 0.0236 0.0316 0.0342 0.0373 0.0409 0.0467 

MAE 0.1388 02024 02255 0.2383 0.2556 02851 

MAPE 0.0174 0.0256 0.0285 0.0302 0.0324 0.0362 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0031 0.0000 (0.0031) (0.0156) (0.0286) (0.0314) 

EV 0.0458 0.1048 0.1577 02067 0.2661 0.3089 

RMSE 02140 0.3238 0.3971 0.4549 0.5166 0.5566 

RMSPE 0.0364 0.0563 0.0692 0.0797 0.0907 0.0980 

MAE 0.1740 02717 0.3222 0.3690 0.4095 0.4300 

MAPE 0.0297 0.0470 0.0560 0.0642 0.0712 0.0745 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0137 0.0283 0.0458 0.0330 0.0245 0.0328 

EV 0.0825 0.1683 02301 02920 0.3689 0.4416 

RMSE 0.4058 0.5773 0.6706 0.7509 0.8416 0.9266 

RMSPE 0.0601 0.0879 0.1033 0.1170 0.1316 0.1447 

MAE 0.3128 0.4741 0.5477 0.6073 0.6651 0.7151 

MAPE 0.0472 0.0726 0.0845 0.0944 0.1036 0.1107 
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Table 6.3.23. Forecasting performance (Baa vs. Ibb), Hansen-Seo, lag = 1, (3 estimated 

Baa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0507 0.0974 0.1296 0.1436 0.1536 0.1619 

EV 0.0330 0.0534 0.0700 0.0824 0.1067 0.1387 

RMSE 0.1887 0.2508 02946 0.3209 0.3609 0.4061 

RMSPE 0.0234 0.0316 0.0370 0.0405 0.0454 0.0506 

MAE 0.1391 0.1934 0.2389 02625 0.2877 0.3041 

MAPE 0.0175 0.0245 0.0303 0.0334 0.0363 0.0382 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0253) (0.0608) (0.0992) (0.1364) (0.1672) (0.1943) 

EV 0.0433 0.0746 0.1100 0.1525 0.1998 02434 

RMSE 02097 0.2799 0.3461 0.4137 0.4772 0.5302 

RMSPE 0.0370 0.0500 0.0622 0.0744 0.0854 0.0941 

MAE 0.1687 02265 02926 0.3460 0.4021 0.4357 

MAPE 0.0293 0.0397 0.0516 0.0610 0.0706 0.0763 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0253 0.0365 0.0304 0.0072 (0.0136) (0.0323) 

EV 0.0763 0.1281 0.1799 02349 0.3065 0.3821 

RMSE 0.3983 0.5307 0.6407 0.7346 0.8381 0.9363 

RMSPE 0.0604 0.0815 0.0992 0.1149 0.1308 0.1447 

MAE 0.3078 0.4199 0.5316 0.6085 0.6898 0.7398 

MAPE 0.0468 0.0642 0.0819 0.0944 0.1070 0.1146 
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Table 63.24. Forecasting performance (Baa vs. Ibb), Hansen-Seo, lag = 1, P = 1 

Baa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0248 0.0521 0.0768 0.0916 0.1075 0.1295 

EV 0.0379 0.0585 0.0618 0.0615 0.0724 0.0980 

RMSE 0.1961 0.2475 0.2601 02643 0.2898 0.3388 

RMSPE 0.0242 0.0309 0.0325 0.0335 0.0366 0.0422 

MAE 0.1450 0.1952 0.2132 0.2166 02392 0.2604 

MAPE 0.0182 0.0247 0.0270 0.0276 0.0304 0.0328 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0072) (0.0210) (0.0369) (0.0511) (0.0591) (0.0622) 

EV 0.0356 0.0704 0.1003 0.1371 0.1803 02229 

RMSE 0.1889 0.2662 0.3189 0.3738 0.4287 0.4762 

RMSPE 0.0327 0.0471 0.0569 0.0669 0.0762 0.0835 

MAE 0.1531 02131 0.2690 0.3169 0.3533 0.3834 

MAPE 0.0264 0.0372 0.0472 0.0556 0.0618 0.0667 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0176 0.0311 0.0399 0.0405 0.0484 0.0673 

EV 0.0735 0.1289 0.1621 0.1985 0.2527 0.3209 

RMSE 0.3851 0.5137 0.5790 0.6380 0.7185 0.8150 

RMSPE 0.0570 0.0781 0.0894 0.1003 0.1128 0.1257 

MAE 0.2981 0.4083 0.4822 0.5334 0.5925 0.6439 

MAPE 0.0446 0.0619 0.0742 0.0831 0.0921 0.0995 
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Table 63.25. Forecasting performance (Baa vs. Ibb), Enders-Siklos, C-TAR, lag = 1 

Baa | 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0245 0.0377 0.0495 0.0502 0.0542 0.0667 

EV 0.0400 0.0658 0.0743 0.0860 0.1063 0.1369 

RMSE 0.2015 02593 0.2770 0.2975 0.3305 0.3759 

RMSPE 0.0249 0.0325 0.0346 0.0375 0.0416 0.0470 

MAE 0.1525 0.2018 02098 0.2423 0.2571 02838 

MAPE 0.0192 0.0255 0.0265 0.0308 0 0326 0.0359 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0489) (0.1015) (0.1496) (0.1953) (02322) (0.2602) 

EV 0.0348 0.0711 0.1053 0.1485 0.1975 02404 

RMSE 0.1927 0.2853 0.3574 0.4320 0.5014 0.5551 

RMSPE 0.0335 0.0511 0.0648 0.0790 0.0915 0.1009 

MAE 0.1646 02325 02810 0.3461 0.4121 0.4587 

MAPE 0.0284 0.0407 0.0498 0.0614 0.0730 0.0812 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0244) (0.0637) (0.1001) (0.1451) (0.1779) (0.1936) 

EV 0.0748 0.1369 0.1796 02345 0.3038 0.3773 

RMSE 0.3943 0.5446 0.6344 0.7295 0.8319 0.9310 

RMSPE 0.0585 0.0836 0.0994 0.1165 0.1331 0.1479 

MAE 0.3171 0.4343 0.4908 0.5884 0.6692 0.7425 

MAPE 0.0476 0.0663 0.0763 0.0921 0.1056 0.1170 
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Table 6.3.26. Forecasting performance (Baa vs. Ibb), Engle-Granger, lag = 2 

Baa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0298 0.0472 0.0603 0.0604 0.0626 0.0717 

EV 0.0406 0.0658 0.0723 0.0805 0.0986 0.1274 

RMSE 0.2037 0.2608 02756 0.2901 0.3201 0.3640 

RMSPE 0.0252 0.0327 0.0344 0.0366 0.0403 0.0455 

MAE 0.1541 0.2037 02152 0.2377 02487 02762 

MAPE 0.0194 0.0258 0.0272 0.0302 0.0315 0.0349 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0480) (0.1003) (0.1484) (0.1940) (0.2310) (02593) 

EV 0.0347 0.0709 0.1049 0.1477 0.1963 0.2389 

RMSE 0.1924 02846 0.3562 0.4305 0.4997 0.5533 

RMSPE 0.0335 0.0510 0.0646 0.0787 0.0912 0.1006 

MAE 0.1640 02320 02804 0.3450 0.4112 0.4580 

MAPE 0.0283 0.0406 0.0496 0.0611 0.0728 0.0810 
Sum 1-step 2-step 3*tep 4-*tep 5-step 6-step 

ME (0.0182) (0.0531) (0.0881) (0.1337) (0.1684) (0.1876) 

EV 0.0753 0.1367 0.1772 02282 0.2949 0.3662 

RMSE 0.3961 0.5453 0.6318 0.7207 0.8198 0.9173 

RMSPE 0.0586 0.0836 0.0990 0.1153 0.1315 0.1461 

MAE 0.3181 0.4358 0.4956 0.5827 0.6599 0.7342 

MAPE 0.0477 0.0664 0.0769 0.0913 0.1044 0.1159 
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Table 6.4.1. Results of Lo-Zivot models with non-unity cointegrating vectors 

Aaa vs. 12% Aaa vs. Tsy Baa vs. Tsy 

Cointegrating vector [1,-1.028] [1,-1.039] [1,-1.178] 

1st regime short rate eq 
constant term 
error-correction term 
short rate lagged one term 
long rate lagged one term 

est coeff. 
0.0564 
0.4051 
12385 

(12162) 

std error 
0.0402 
0.2750 
02603 
0.3027 

est coeff. 
0.0741 
02234 
1.3281 

(1.4071) 

std error 
0.0484 
02132 
02308 
02690 

est coeff. std error 
0.0967 0.0634 
0.3043 0.1516 
1.1612 0.1740 

(1.0680) 0.2260 

1st regime long rate eq 
constant term 
error-correction term 
short rate lagged one term 
long rate lagged one term 

0.0013 
(0.1265) 
0.9758 

(0.3533) 

0.0922 
0.4440 
02690 
0.3209 

(0.0072) 
0.0279 
0.7780 
0.1015 

0.0871 
0.7990 
0.3310 
0.3907 

0.0003 
0.0544 
02361 
0.0393 

0.0269 
0.0758 
0.1064 
0.1571 

2nd regime short rate eq 
constant term 
error-correction term 
short rate lagged one term 
long rate lagged one term 

(0.0545) 
0.0803 
0.3931 

(0.1638) 

0.0455 
0.0611 
0.1214 
0.1615 

(0.0361) 
0.0671 
0.3853 

(0.1423) 

0.0358 
0.0554 
0.1179 
0.1585 

(02383) 
02219 
0.6055 

(02089) 

0.0969 
0.0840 
0.1221 
0.1842 

2nd regime long rate eq 
constant term 
error-correction term 
short rate lagged one term 
long rate lagged one term 

0.0708 
0.0876 
1.1831 

(1.1040) 

0.0295 
02019 
0.1911 
0.2223 

0.0849 
0.0708 
12602 

(12276) 

0.0355 
0.1564 
0.1693 
0.1973 

0.0556 
0.0844 
0.7309 

(03019) 

0.0407 
0.0972 
0.1116 
0.1450 

3rd regime short rate eq 
constant term 
error-correction term 
short rate lagged one term 
long rate lagged one term 

0.0050 
(0.0678) 
0.8638 

(02722) 

0.0677 
0.3260 
0.1975 
02356 

(0.0245) 
02805 
0.5819 
02079 

0.0639 
0.5860 
02427 
02866 

0.0103 
(0.0175) 
0.1616 
02091 

0.0173 
0.0487 
0.0683 
0.1008 

3rd regime long rate eq 
constant term 
error-correction term 
short rate lagged me term 
long rate lagged one term 

(0.0259) 
0.0212 
03084 

(0.0477) 

0.0334 
0.0449 
0.0892 
0.1186 

(0.0131) 
0.0091 
0.3210 

(0.0556) 

0.0263 
0.0406 
0.0865 
0.1162 

(0.0393) 
0.0200 
0.2945 
02089 

0.0622 
0.0539 
0.0784 
0.1181 

1st regime obs 
2nd regime obs 
3rd regime obs 
Gamma hat 1 
Gamma bat 2 
LR13 
p-value 

68 
96 

290 
0.09 
0.31 

52.09 
0.004 

70 
71 

313 
0.03 
0.18 

67.34 
0.001 

75 
271 
108 

(0.15) 
0.67 

56.32 
0.002 
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Table 6.4.1. (continued) 

Baa vs. Tsy Aaa vs. Ibb Baa vs. Ibb 

Cointegrating vector [1,-1.108] [1,-0.981] [1, -1.385] 

1st regime short rate eq est coeft std error est coeff. std error est coeft std error 
constant term 0.0166 0.0576 (0.0261) 0.0598 0.3481 0.1180 
error-correction term 0.0057 02382 0.0266 0.1113 0.1712 0.0535 
short rate lagged one term 1.3569 02118 0.1659 0.0983 0.4185 0.0821 
long rate lagged one term (1.5600) 0.2556 0.1811 0.1210 (02055) 0.1103 

1st regime long rate eq 
constant term 0.0486 0.0499 (0.5934) 0.6923 0.1262 0.0773 
error-correction term (0.0573) 0.0550 0.6010 0.8317 0.1140 0.0672 
short rate lagged one term 0.4597 0.0951 (0.4351) 0.1633 0.1174 0.0772 
long rate lagged one term (0.0866) 0.1369 (0.0828) 0.1631 0.0123 0.1130 

2nd regime short rate eq 
constant term 0.1843 02110 (0.0912) 0.1724 (0.0267) 0.0513 
error-correction term (0.0726) 0.1151 0.1180 0.1408 (0.1058) 0.1487 
short rate lagged one term 02058 0.1367 0.2677 0.0953 (0.5446) 0.1652 
long rate lagged one term 0.0796 02152 (0.2284) 0.1137 0.0427 02968 

2nd regime long rate eq 
constant term 0.0579 0.0364 0.0495 0.0327 0.0339 0.0552 
error-correction term (02036) 0.1507 (0.0830) 0.0608 0.0111 0.0250 
short rate lagged one term 0.8000 0.1340 0.5108 0.0537 0.5220 0.0384 
long rate lagged one term (0.4499) 0.1617 0.1038 0.0661 0.1066 0.0516 

3rd regime short rate eq 
constant term 0.0504 0.0316 (0.7287) 0.3781 0.0605 0.0362 
error-correction term (0.0574) 0.0348 0.8251 0.4542 0.0602 0.0315 
short rate lagged one term 0.3309 0.0602 0.1685 0.0892 0.4059 0.0361 
long rate lagged one term 0.1307 0.0866 0.0615 0.0891 02789 0.0529 

3rd regime long rate eq 
constant term 0.1884 0.1335 0.0897 0.0942 (0.0741) 0.0240 
error-correction tern (0.1198) 0.0728 (0.0887) 0.0769 (0.1802) 0.0696 
short rate lagged one term (0.0089) 0.0865 0.5622 0.0521 (0.0369) 0.0773 
long rate lagged one term 0.3851 0.1362 (0.1669) 0.0621 02137 0.1389 

1st regime obs 78 284 158 
2nd regime obs 309 73 225 
3rd regime obs 67 97 71 
Gamma hat 1 0.35 0.76 (1.62) 
Gamma hat 2 1.48 0.92 (0.52) 
LR13 73.03 47.50 70.75 
p-value 0 0.011 0 
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Table 6.42. Forecasting performance (Aaa vs. Tsy), Lo-Zivot, lag = 2, p= 1.028 

Aaa | 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0055) 0.0170 0.0625 0.1094 0.1723 0.2516 

EV 0.0297 0.0585 0.0816 0.0990 0.1414 0.1967 

RMSE 0.1724 02424 02924 0.3331 0.4136 0.5099 

RMSPE 0.0245 0.0347 0.0417 0.0473 0.0581 0.0709 

MAE 0.1380 0.1929 02426 0.2622 0.3125 0.3671 

MAPE 0.0198 0.0278 0.0348 0.0375 0.0442 0.0516 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0890 0.2612 0.4875 0.7607 1.0977 1.5105 

EV 0.0749 02239 0.3932 0.6227 1.0047 1.5333 

RMSE 02878 0.5405 0.7943 1.0960 1.4865 1.9532 

RMSPE 0.0547 0.1054 0.1565 02127 02827 0.3690 

MAE 0.2296 0.4307 0.6291 0.8775 1.1942 1.5847 

MAPE 0.0435 0.0827 0.1207 0.1673 0.2254 0.2993 
Sum 1-step 2-step 3-step 4-step 5-step 6-steP 

ME 0.0834 02782 0.5500 0.8701 12700 1.7622 

EV 0.1046 02824 0.4748 0.7217 1.1461 1.7300 

RMSE 0.4601 0.7829 1.0867 1.4292 1.9001 2.4631 

RMSPE 0.0792 0.1402 0.1981 0.2600 0.3408 0.4399 

MAE 0.3676 0.6236 0.8717 1.1397 1.5066 1.9519 

MAPE 0.0633 0.1105 0.1555 0.2048 02696 0.3508 
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Table 6.4.3. Forecasting performance (Aaa vs. Tsy), Lo-Zivot, lag = 2, P = 1.039 

Aaa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0003 (0.1127) (0.2493) (0.5518) (0.8429) (0.9653) 

EV 0.0300 0.0608 0.0928 0.2092 0.2659 0.4091 

RMSE 0.1731 0.2710 0.3937 0.7167 0.9881 1.1580 

RMSPE 0.0246 0.0393 0.0575 0.1052 0.1446 0.1697 

MAE 0.1373 0.2162 0.3166 0.5879 0.8561 0.9863 

MAPE 0.0196 0.0314 0.0461 0.0858 0.1247 0.1439 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.3820) (0.8597) (1.4086) (1.8004) (2.0598) (2.1617) 

EV 0.0680 0.1789 0.3464 0.5087 0.7466 0.7985 

RMSE 0.4625 0.9581 1.5266 1.9366 22337 2.3391 

RMSPE 0.0917 0.1935 0.3093 0.3928 0.4564 0.4798 

MAE 0.3975 0.8634 1.4086 1.8004 2.0598 2.1617 

MAPE 0.0776 0.1698 02773 0.3541 0.4068 0.4281 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.3816) (0.9724) (1.6579) (2.3522) (2.9028) (3.1271) 

EV 0.0980 02397 0.4392 0.7179 1.0125 12075 

RMSE 0.6357 1.2291 1.9203 2.6533 32218 3.4971 

RMSPE 0.1163 02328 0.3668 0.4980 0.6011 0.6495 

MAE 0.5348 1.0795 1.7252 2.3883 2.9159 3.1480 

MAPE 0.0973 0.2012 0.3233 0.4399 0.5315 0.5721 
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Table 6.4.4. Forecasting performance (Baa vs. Tsy), Lo-Zivot, lag = 2, p = 1.17 

Baa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0022 0.0189 0.0405 0.0541 0.0701 0.0919 

EV 0.0453 0.0771 0.0900 0.0991 0.1275 0.1655 

RMSE 0.2127 0.2783 0.3027 0.3195 0.3639 0.4171 

RMSPE 0.0265 0.0350 0.0381 0.0406 0.0459 0.0521 

MAE 0.1641 02222 02447 02646 02882 0.3182 

MAPE 0.0208 0.0282 0.0311 0.0337 0.0365 0.0402 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0030 0.0002 (0.0019) (0.0124) (0.0176) (0.0136) 

EV 0.0532 0.1244 0.1907 02576 0.3452 0.4064 

RMSE 0.2306 0.3527 0.4367 0.5077 0.5878 0.6376 

RMSPE 0.0437 0.0693 0.0873 0.1027 0.1182 0.1267 

MAE 0.1885 0.2797 0.3575 0.4249 0.4775 0.5213 

MAPE 0.0358 0.0542 0.0699 0.0835 0.0937 0.1013 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0052 0.0190 0.0385 0.0417 0.0525 0.0783 

EV 0.0984 02015 02807 0.3568 0.4727 0.5719 

RMSE 0.4433 0.6310 0.7394 0.8272 0.9517 1.0547 

RMSPE 0.0702 0.1043 0.1255 0.1433 0.1641 0.1789 

MAE 0.3526 0.5019 0.6022 0.6896 0.7657 0.8396 

MAPE 0.0566 0.0824 0.1010 0.1173 0.1302 0.1414 
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Table 6.4.5. Forecasting performance (Baa vs. Tsy), Lo-Zivot, lag = 2, P = 1.108 

Baa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0959 0.1638 0.2578 0.3158 03641 0.4114 

EV 0.0406 0.0703 0.0946 0.1243 0.1779 02752 

RMSE 02231 0.3117 0.4013 0.4733 0.5572 0.6667 

RMSPE 0.0279 0.0389 0.0507 0.0598 0.0701 0.0835 

MiAE 0.1741 0.2291 0.3228 0.3845 0.4473 0.5281 

MAPE 0.0221 0.0289 0.0409 0.0487 0.0564 0.0665 
Tsy 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0115 0.0294 0.0445 0.0365 0.0253 0.0205 

EV 0.0663 0.1828 0.3249 0.5303 0.8192 1.1136 

RMSE 02577 0.4285 0.5718 0.7292 0.9055 1.0555 

RMSPE 0.0486 0.0837 0.1122 0.1412 0.1733 02008 

MAE 02091 0.3476 0.4949 0.6299 0.7749 0.8864 

MAPE 0.0394 0.0671 0.0954 0.1207 0.1470 0.1674 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.1074 0.1932 0.3023 03523 03894 0.4319 

EV 0.1068 02531 0.4195 0.6546 0.9971 1.3888 

RMSE 0.4807 0.7403 0.9731 12024 1.4627 1.7221 

RMSPE 0.0765 0.1225 0.1628 0.2010 0.2434 0.2843 

MAE 0.3833 0.5767 0.8177 1.0144 12222 1.4145 

MAPE 0.0615 0.0960 0.1363 0.1694 0.2034 0.2339 
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Table 6.4.6. Forecasting performance (Aaa vs. Ibb), Lo-Zivot, lag = 2, P = 0.98 

Aaa 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0262 (0.1091) (0.1335) (0.1209) (0.0985) (0.0213) 

EV 0.0316 0.0921 0.1362 0.1919 0.3201 0.5173 

RMSE 0.1797 0.3225 0.3925 0.4544 0.5743 0.7196 

RMSPE 0.0254 0.0464 0.0564 0.0657 0.0834 0.1055 

MAE 0.1358 0.2525 0.3129 0.3694 0.4862 0.6029 

MAPE 0.0193 0.0364 0.0450 0.0534 0.0705 0.0878 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.3028) (0.4131) (0.4741) (0.5519) (0.5839) (0.5964) 

EV 0.0932 0.1705 0.2204 0.3214 0.4062 0.4916 

RMSE 0.4300 0.5840 0.6672 0.7912 0.8644 0.9205 

RMSPE 0.0755 0.1031 0.1182 0.1404 0.1537 0.1636 

MAE 0.3516 0.4813 0.5472 0.6446 0.7045 0.7551 

MAPE 0.0614 0.0844 0.0963 0.1135 0.1240 0.1327 
Sum 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.2766) (0.5222) (0.6076) (0.6728) (0.6824) (0.6178) 

EV 0.1248 0.2626 0.3566 0.5133 0.7263 1.0089 

RMSE 0.6097 0.9066 1.0597 12456 1.4387 1.6401 

RMSPE 0.1009 0.1494 0.1746 02062 0.2371 0.2691 

MAE 0.4874 0.7338 0.8601 1.0139 1.1907 1.3580 

MAPE 0.0808 0.1208 0.1413 0.1669 0.1945 0.2205 
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Table 6.4.7. Forecasting performance (Baa vs. Ibb), Lo-Zivot, lag = 2, (3 = 1.385 

Baa | 1-step 2-step 3-step 4-step 5-step 6-step 

ME 0.0425 0.0659 0.0946 0.0769 0.0502 0.0169 

EV 0.0335 0.0635 0.0823 0.0964 0.1194 0.1546 

RMSE 0.1878 0.2604 0.3020 0.3199 0.3491 0.3936 

RMSPE 0.0233 0.0327 0.0382 0.0407 0.0444 0.0501 

MAE 0.1384 0.1898 02461 02592 0.2871 0.3241 

MAPE 0.0175 0.0240 0.0313 0.0331 0.0366 0.0413 
Ibb 1-step 2-step 3-step 4-step 5-step 6-step 

ME (0.0624) (0.1149) (0.1777) (02388) (0.3034) (0.3524) 

EV 0.0455 0.0889 0.1280 0.1746 02355 02856 

RMSE 0.2222 0.3195 0.3995 0.4813 0.5723 0.6402 

RMSPE 0.0381 0.0568 0.0717 0.0872 0.1038 0.1164 

MAE 0.1804 02660 0.3191 0.4021 0.4852 0.5464 

MAPE 0.0310 0.0466 0.0562 0.0709 0.0857 0.0966 
Sum 1-step 2-step 3-step 4-*tep 5-step 6-step 

ME (0.0199) (0.0490) (0.0832) (0.1619) (02532) (0.3355) 

EV 0.0790 0.1524 02103 0.2711 0.3549 0.4402 

RMSE 0.4100 0.5800 0.7016 0.8013 0.9214 1.0337 

RMSPE 0.0614 0.0895 0.1099 0.1279 0.1482 0.1665 

MAE 0.3189 0.4558 0.5652 0.6614 0.7723 0.8705 

MAPE 0.0485 0.0706 0.0875 0.1040 0.1223 0.1379 
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Figure 6.1. Aaa vs. Tsy, Enders-Siklos, M-C TAR, lag = 2 
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Figure 62. Aaa vs. Tsy, Engle-Granger, lag = 2 
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Figure 6.3. Aaavs. Tsy, Neal-Rolph-Morris, lag = 2 
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Figure 6.4. Baa vs. Tsy, Hansen-Seo, lag = 1, P = 1 
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Figure 6.5. Baa vs. Tsy, Hansen-Seo, lag = 1, P estimated 
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Figure 6.6. Baa vs. Tsy, Neal-Rolph-Morris, lag = 2 
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Figure 6.7. Aaa vs. Ibb, Hansen-Seo, lag = 1, P estimated 
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Figure 6.8. Aaa vs. Ibb, Hansen-Seo, lag = 1, P = 1 
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Figure 6.9. Baa vs. Ibb, Lo-Zivot, lag = 1 
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Figure 6.10. Baa vs. Ibb, Hansen-Seo, lag = 1, P = 1 
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chapter?. conclusions 

This study utilized monthly averages of daily rates for the 10-year constant maturity 

Treasury note, the Ibbotson Bond Index with maturity of 20-year Treasury Index, and 

Moody's Aaa and Baa seasoned bond indices to investigate the threshold behavior of interest 

rates pairs. The data covered the period from January 1960 to December 1997 with a total of 

456 observations for each variable. Three different non-linear, discontinuous, asymmetric 

time-series econometric alternatives were applied to investigate the dynamics of the four 

interest rates pairs. Forecasting accuracy evaluation was utilized for model evaluation by 

applying one-step-ahead up to six-step-ahead forecasts. 

Among the findings, it was ascertained that interest spreads are stationary, yet the 

speeds of adjustment are asymmetric. In a bivariate setting, all of the interest rates pairs 

followed the threshold cointegration behavior. All the interest rates pairs were shown to be 

threshold cointegrated. In general, the adjustment speeds were asymmetric and, especially, 

the threshold estimates were asymmetric in a three-regime environment. 

Long run equilibrium relationships existed between Moody's corporate bond indices 

and Treasury note and Ibbotson bond index. In general, for a one percent increase in 

Treasury rates (either Treasury note or Ibbotson index), in the long run, it will generate a 

more than one percent increase in corporate bond indices (Aaa or Baa). Furthermore, the Baa 

bond index was shown to have a greater sensitivity to interest rate changes than the Aaa bond 

index. Above findings are coherent with NRM(2000) but inconsistent with a commonly held 

view that increased credit risk will make corporate bonds less interest rate sensitive as 
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stressed by NRM(2000). This finding has strong implications in the area of corporate bond 

pricing, risk management, and portfolio management. 

For the model evaluation side, one-step-ahead forecast to six-step-ahead forecast 

performance evaluations were conducted for the threshold cointegration models and the 

counterpart of the linear cointegration models. The results showed that no one particular 

threshold cointegration model dictated the overall forecasting accuracy. For different interest 

rates pairs under consideration, different threshold cointegration models offered a better fit. 

Moreover, all of the linear cointegration models performed relatively less accurate than the 

threshold cointegration models, which reinforce the empirical applications of the threshold 

cointegration models. 

The strong evidence of threshold behavior is in contrast to previous work in credit 

dynamics. There is one immediate implication from this finding when considering 

NRM(2000y s puzzle regarding how one could effectively model the time-varying correlation 

matrix. Some corporate bond pricing models, e.g., Das and Tufano (1996) and Jarrow, 

Lando, and Tumbull (1997), are based on the probability transition matrix to govern the 

dynamics of future debt ratings. However, both models employ an exogenously specified 

fixed correlation matrix between spreads and rates. In reality, it is not appropriate to fix the 

correlation matrix. NRM (2000) showed that the correlation between spreads and rates is 

time varying. NRM(2000) noted, 'Vf zmc/ew fo Aow fo /%zromeferize f&e correfofzcvz 

Aefwee» fpreai? awf mf&s." It might be that the threshold cointegration methodology is a 

powerful tool to model the time-varying correlation matrix between spreads and rates. One 

might estimate the historical data to obtain the model estimates and different correlation 

matrices under different regimes. Then, based on above information, combined with current 
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rates and spreads, one might easily model the credit spread dynamics with time-varying 

correlation matrices. 

Although convincing evidence has been presented in this research that threshold 

cointegration specification is a powerful tool for the empirical econometric application, there 

are still some possible future research issues. In the theoretic iront, researchers might 

consider the following: 

* When using Enders-Siklos model, extend the model to allow for two threshold 

variables so that the specification has a three-regime setting. 

* When applying Hansen-Seo and Lo-Zivot specifications, allow for estimating 

cointegrating vector, delay variable and threshold variables simultaneously. 

* For all threshold cointegration models in this study, extend the models to allow 

for at least three variables in the threshold cointegration framework, i.e., allowing 

for TVECMs with multiple cointegrating vectors. 

* Develop a distribution theory for the parameter estimates for the threshold 

cointegration model. 

In the empirical application side, researchers might consider the following: 

* Extend the model setting to have multiple corporate bond indices to examine 

whether rates in one credit class contain information about the level and short run 

dynamics of rates in another credit class. 

* Include some other macroeconomic variables in the threshold cointegration 

setting to control for economic evolution. 

* Incorporate some other variables like, liquidity risk, default risk, the expected loss 

in the event of default into the specification to model the yield on risky debts. 
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appendix a. estimation of the lo-zivot model 

Based on sequential conditional least squares method, some of the previous research 

effort in the estimation of TAR and TVECM models include: Tong (1983) and Hansen 

(1999), for the estimation of univariate TAR models; Chan and Tsay (1998) and Berben and 

van Dijk (1998,1999), for the estimation of continuous univariate TAR models. In Tsay 

(1998), the estimation of multivariate TVAR models is discussed. However, the estimation 

of a TVECM, with a known cointegrating vector, has not been formally discussed. Lo and 

Zivot (2001) combines Hansen's (1999) treatment of the estimation of TAR(2) and TAR(3) 

and Tsay's (1998) treatment of the estimation of multivariate TVAR models to estimate a 

TVECM model with one known cointegrating vector. A sketch of the Lo-Zivot estimation 

procedure is provided in this appendix. 

Let Xt be a 2 x 11(1) time series, which is cointegrated with one known 2x1 

cointegrating vector p. Let w, = p'x, denote the 1(0) error-correction term. Then, a 

TVECM (threshold vector error correction model) of order k at level can be written as: 

parameter, an integer, and usually is assumed to be less than the order of autoregression in 

the model (k). With dimensions: X*_i is 2k x 1, Aj is 2k x 2, where j = 1,2. 

One may rewrite above equation as: 

(A.1) 

where X*_, = [l, w,_,, Ax,_,, Ax,Ax,_%+,], c is the threshold parameter, d is the delay 

Ax, = A|X,_,I, (c,d) 4- A',X,_, (1 -1, (c,d)) + u,, (A.2) 
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where I, (c, d) = I(w,_j ^ c), and I( ) is the indicator function. 

Lo and Zivot propose a two-step procedure to estimate model (A.2) by sequential 

multivariate least squares. The procedure states: 

Step 1 : Conditional on (c,d), the parameters (Ai, A%) are estimated by multivariate 

least squares giving the residual sum of squares: 

S; (c, d) = traced (c, d)), 

where (c, d) is the multivariate least squares estimate of Z = var(u, ), conditional on (c,d) 

for the two-regime TVECM. 

Step 2: The least squares estimates of (c,d) are obtained as: 

(c,d) = argminS^c.d), 
c,d 

by using a two-dimensional grid search to find the values of c and d. The final estimates of 

Âj are given by Aj = Aj(c,d), j = 1,2, and the estimate of the residual covariance matrix is 

given by %(c,d). 

Next, consider a three-regime TVECM in the following: 

Ax, = 

A|X,_,+u„ if w,_j<cO, 

A;X,_, +u,, if c^<w^<c^, (A.3) 

A^X,., +u,, if w,_j>c^. 

One can rewrite above model as: 

Ax, = A^X,_]I;,(c, d) -r A^X,^^, (c, d) + A^X,_^Ig, (c, d) + u,, 

where c = (c^,c^) and 
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I/c^) <z,_j = = 

[0, otherwise, 

where — oo = < c^ < = co. 

Similar two-step procedure may be used to estimate the parameters in above three-

regime TVECM. 

Step 1 : Conditional on (c,d), estimate (Ai, A%, A3) by multivariate least squares, 

giving the residual sum of squares Sg(c,d); 

S, (c, d) = trace(% (c, d)), 

where (c, d) is the multivariate least squares estimate of Z = var(u, ), conditional on (c,d) 

for the three-regime TVECM. 

Step 2: Minimize Sg(c,d) by using a three-dimensional grid search to And the values 

of c and d. 

Hansen (1999) recommends a two-step short cut to avoid the three-dimensional grid 

search. Since, if the grid points become large, the computation becomes more burdensome. 

Hansen's two-step strategy adopts the sequential estimation of multiple breakpoints method 

proposed by Bai (1997). Hansen's two-step procedure is: 

Step 1 : Estimate the mis-specified two-regime model to obtain least squares 

estimates (c,,d). 

Step 2: Estimate c = (c^,c^) by least squares on equation (A.3) imposing d = d 

and one element of c equals c,. The resulting estimate c% will be consistent for the 

remaining element of the pair (c^ ,c^). 
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appendix b. estimation of the hansen-seo model 

Let Xt be a p x 11(1) time series, which is cointegrated with one p x 1 cointegrating 

vector p. Let w,(p) = p'x, denote the 1(0) error-correction term. Then, a linear VECM 

(vector error correction model) of order (L+l) can be written as: 

where Xi_,(P) = [l, w,_,(P), Ax,_,, Ax,Ax,_^], 

with dimensions: X*_i(P) is k x 1, A is k x p, and k = pL+2. The error term Ut is a p x 1 

Martingale difference sequence with finite variance matrix Z = E(u,u,) of dimension p x p. 

Here, wu(P) and X*.,(p) indicate that the variables are evaluated at a generic value of p. 

When evaluated at the true value of the cointegrating vector, the variables are denoted as wn 

and Xt.i, respectively. 

To achieve identification, one needs to impose normalization restrictions on p. For 

the p = 2 case, since there is only one cointegrating vector, one element of P is set to equal 

unity. For p > 2, the restriction is imposed that in the i-th cointegrating vector, the coefficient 

on x% enters with a nonzero coefficient, which one can normalize to 1, for i = l,...,p. 

Under the assumption that the errors u* are i.i.d. Gaussian, one can estimate the 

parameters (P, A, Z) by MLE (maximum likelihood estimation). Let the estimates be 

denoted (P,A,Z), and let u^ = Ax^ - A'X^_, (P) be the residual vector. 

A two-regime threshold cointegration model can be expressed as: 

Ax, = A'X,_,(P) + u,, (B.l) 
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where y is the threshold parameter. One may rewrite the above equation as: 

Ax, = (P)d„ (p, y) + A,X,_, (P)d^, (P, y) + u,, (B.2) 

where d„ (P, y) = I(w,_, (P) < y), d^, (P, y) = I(w,_, (P) > y), and I( ) is the indicator function. 

Notice that the value of the error correction term w,_,(P) = P' x,_, deûnes the two regimes in 

the threshold model (B.2). The coefficient matrix Ai is not necessarily equal to A%. 

The threshold effect has content, if 0 < Pr(w,_, (p) < y) < 1, as Hansen and Seo 

indicate, otherwise the threshold cointegration model will collapse to a linear cointegration 

model. The following constraint was imposed to ensure the nonlinearity: 

%o ^M*,., 3y)3l-%o, (B.3) 

where > 0 is a trimming parameter. Notice that setting Tig too close to zero will reduce 

testing power. Andrews (1993) suggests that setting between 0.05 and 0.15 is more 

appropriate. 

Since u* is i.i.d. Gaussian, the likelihood function is: 

L. ( A,, A,, Z, p, y) = - log|Z| -1 ̂  u, (A,, A;, P, y)' Z"'u, ( A,, A^, p, y), 

where: u,(Ai,A;,p,y) = Ax, -A,x,_,(p)d„(p, y)-A;X,_,(P)d2,(P, y). TheMLE 

(Â,, Â;, Ê, P,y) are the values that maximize (A,,A^, y). 

Estimation procedure 

Step 1: First, concentrate out (A,,A],Z) by holding (P,y) fixed and compute the 

constrainedMLE for (A,,A;,Z). 

Through appropriate constrained OLS estimation, one obtains: 
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/ n yV n 
Â,(P,y) = %]X,_,(P)X,_,(P)d„(P,7) gX,_,(P)Ax,d„(P,y) 

V t-i / \ t-i 

Â2(P,7) = f jxt.1(P)X,_1(|3),cl2,(P,T)l ( £x,_,(P)Ax,d2, (p,y)X 

V (-1 y V i-i 

(B.4) 

(B.5) 

ût (P, y) = u, (A, (P, y), A; (P, y), p, y) 

and 

W,Y) = -iû,(P,y)û,(p,y). (B. 
n t=i 

Notice that (B.4) (or (B.5)) is the OLS regressions of Ax, on Xt_i(P) for the subsample for 

which w,_,(P) < y (or w,_, (P) > y). 

The concentrated likelihood function is: 

n, 
L.(P,Y) = L,(A,(P,y), A%(P,y), Z(P,y), P, y) = -YlogZ(p,y) 

2 
(B.7) 

Step 2: Compute the vector of parameters: (p, 

The MLE (P,y) are the minimizers of log Z(P,y) subject to the normalization 

imposed on P and the constraint: < n '3]l(P'x, < y) ^ l-Tt,,. The MLE for Ai and Az are 
t=l 

thus A, =A,(p,y), and A; =A;(p,y). 

Since the concentrated likelihood function is not smooth, in the case of p = 2, Hansen 

and Seo suggest using a grid search over the two-dimensional space (P, y). For higher 

dimension cases (p > 2), they suggest a generic algorithm might be appropriate. 
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Hansen-Seo algorithm for the p = 2 case 

1. Use OLS applied to the linear cointegration model to obtain a consistent initial estimate 

ofp, P. 

2. Construct a larger confidence interval [Pi, Pu] for P constructed 6om p . Two end points 

of the larger confidence interval are: Pi = p - 6*se( p ) and Pu = P + 6*se( P ), where 

se( P ) is the estimated standard error of P 6om step 1. 

3. Form an evenly spaced grid on [Pu Pu] 

4. Compute w,_, = w^_, (P) = P'x,_, and order the series from low to high (or high to low). 

5. The search region [yu yu] is set so that yi is the %o percentile of w,_,, and yu is the (1 -

%o) percentile. This step imposes the constraint (B.3): < Pr(w,_, < y) < 1 - Tig. 

6. Form an evenly spaced grid on [yu yu]-

7. Form a two-dimensional grid on [Pu pu] x [yu yu]. 

8. For each pair of (P,y) on the grid, compute Â, (P,y), Â% (P, y), and Ê(P,y) as defined in 

equations (B.4), (B.5), and (B.6). 

9. Find (P, y) as the values of (P,y) on this grid that yields the lowest value of log Z(P,y) 

10. Compute È = l(P,y), Â, = Â,(P,y), = Â;(P,y), and û, = û,(P,Y). 

11. ReSne the grid search and repeat step 1 to step 10 to see if the solution is sensitive to the 

particular grid chosen. 
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appendix c. some measures of forecast accuracy 

Let y* be the covariance stationary time series and let yt+t,t be the h-step-ahead linear 

squares forecast. Then, the corresponding h-step-ahead forecast error is: e^t = yt+b - yt+h,t-

Define the corresponding h-step-ahead forecast percent error as: pt+b,i = (yt+h - yt+b,t)/yt+h- One 

may define the next few accuracy measures as: 

1 ^ 
Mean error: ME = —Tle^,,, measures bias. Other things being equal, a forecast 

T t-i 

with a small bias is preferred. 

2 T 

Mean percent error: MPE = —^LP,+b.:, measures bias. Other things being equal, a 
T M 

forecast with a small bias is preferred. 

1 ^ 
Error variance: EV = — ^](e,^, - ME)^, measures dispersion of the forecast errors. 

Other things being equal, a forecast is preferable whose errors have small variance. 

However, ME and EV are components of accuracy, but neither provides an overall 

accuracy measure. The most common overall accuracy measures are MSE and MSPE: 

% T 

Mean squared error: MSE = —-

1 ? 
Mean squared percent error: MPSE = —%]Pt+h,t -

T«.i 

Sometimes, the square roots of MSE and MPSE are used to preserve units, yielding 

the RMSE and RMSPE: 

I ^ T 

Root mean squared error: RMSE = J—]Te^,, 
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Root mean squared percent error: RMSPE = JY%]Pt+h., 

Other common accuracy measures are MAE and MAPE: 

1 T 
Mean absolute error: MAE = —^|e,+h,,|. 

T,_i 

1 T 

Mean absolute percent error: MAPE = —Ip^^,, I. 
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